Advertisement

Molecular Biology Reports

, Volume 46, Issue 4, pp 4555–4564 | Cite as

Transcriptomic changes in sweetpotato peroxidases in response to infection with the root-knot nematode Meloidogyne incognita

  • Yeon Woo Sung
  • Il Hwan Lee
  • Donghwan Shim
  • Kang-Lok Lee
  • Ki Jung Nam
  • Jung-Wook Yang
  • Jeung Joo Lee
  • Sang-Soo Kwak
  • Yun-Hee KimEmail author
Original Article

Abstract

A previous transcriptomic analysis of the roots of susceptible and resistant cultivars of sweetpotato (Ipomoea batatas) identified genes that were likely to contribute to protection against infection with the root-knot nematode Meloidogyne incognita. The current study examined the roles of peroxidase genes in sweetpotato defense responses during root-knot nematode infection, using the susceptible (cv. Yulmi) and resistant (cv. Juhwangmi) cultivars. Differentially expressed genes were assigned to gene ontology categories to predict their functional roles and associated biological processes. Comparison with Arabidopsis peroxidases identified a group of genes orthologous to Arabidopsis PEROXIDASE 52 (AtPrx52). An analysis of sweetpotato peroxidase genes determined their roles in protecting plants against root-knot nematode infection and enabled identification of important peroxidases. The interactions involved in sweetpotato resistance to nematode infection are discussed.

Keywords

Defense signaling Root-knot nematodes Sweetpotato Peroxidase Transcriptome 

Abbreviations

ROS

Reactive oxygen species

PR

Pathogenesis-related

PRX

Peroxidase

RKN

Root-knot nematode

DEGs

Differentially expressed genes

GO

Gene ontology

TAIR

Arabidopsis information resource

qRT-PCR

Quantitative real-time RT-PCR

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2018R1A1A1A05018446).

Author contributions

YHK, YWS, IHL and DS conceived and designed the experiments. YWS, IHL and YHK performed the experiments. KLL and KJN analyzed the data. JWY, JJL and SSK contributed to the analysis and provided materials and reagent tools. YHK, YWS, IHL and DS wrote the paper.

Compliance with ethical standards

Conflict of interest

All authors declare that have no conflict of interest.

Supplementary material

11033_2019_4911_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138CrossRefPubMedGoogle Scholar
  2. 2.
    Passardi F, Longet D, Penel C, Dunand C (2004) The plant peroxidase multigenic family in rice and its evolution in green plants. Phytochemistry 65:1879–1893CrossRefPubMedGoogle Scholar
  3. 3.
    Ren LL, Liu YJ, Liu HJ, Qian TT, Qi LW, Wang XR, Zeng QY (2014) Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of populus class III peroxidase family. Plant Cell 26:2404–2419CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shigeto J, Tsutsumi Y (2016) Diverse functions and reactions of class III peroxidases. New Phytol 209:1395–1402CrossRefPubMedGoogle Scholar
  5. 5.
    Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a swiss army knife. Plant Cell Rep 24:255–265CrossRefPubMedGoogle Scholar
  6. 6.
    Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60:391–408CrossRefPubMedGoogle Scholar
  7. 7.
    Almagro L, Gomez Ros LV, Belchi-Navarro S, Bru R, Ros Barcelo A, Pedreno MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390CrossRefPubMedGoogle Scholar
  8. 8.
    Van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:245–264CrossRefGoogle Scholar
  9. 9.
    Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–287CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wally O, Punja ZK (2010) Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over-expressing a rice cationic peroxidase. Planta 232:1229–1239CrossRefPubMedGoogle Scholar
  13. 13.
    Coego A, Ramirez V, Ellul P, Mayda E, Vera P (2005) The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. Plant J 42:283–293CrossRefPubMedGoogle Scholar
  14. 14.
    Oliveira JTA, Andrade NC, Martins-Miranda AS, Soares AA, Gondim DMF, Araújo-Filho JH, Freire-Filho FR, Vasconcelos IM (2012) Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita. Plant Physiol Biochem 51:145–152CrossRefPubMedGoogle Scholar
  15. 15.
    Guimaraes PM, Guimaraes LA, Morgante CV, Silva OB, Araujo ACG, Martins ACQ, Mario A, Saraiva P, Thais N, Oliveira Roberto C, Togawa Leal-Bertioli SCM, Bertioli DJ, Brasileiro ACM (2015) Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance. PLoS ONE 10:e0140937CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Portillo M, Cabrera J, Lindsey K, Topping J, Andrés MF, Emiliozzi M, Resnick N, Oliveros JC, Casado GG, Solano R, Koltai H, Fenoll C, Escobar C (2013) Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytol 197:1276–1290CrossRefPubMedGoogle Scholar
  17. 17.
    Huh GH, Lee SJ, Bae YS, Liu JR, Kwak SS (1997) Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension-cultured cells of sweetpotato and their differential expression in response to stress. Mol Gen Genet 255:382–391CrossRefPubMedGoogle Scholar
  18. 18.
    Kim KY, Huh GH, Lee HS, Kwon SY, Hur Y, Kwak SS (1999) Molecular characterization of two anionic peroxidase cDNAs isolated from suspension cultures of sweetpotato. Mol Gen Genet 261:941–947CrossRefPubMedGoogle Scholar
  19. 19.
    Park SY, Ryu SH, Kwon SY, Lee HS, Kim GK, Kwak SS (2003) Differential expression of six novel peroxidase cDNAs from cell cultures of sweetpotato on response to stress. Mol Gen Genom 269:542–552CrossRefGoogle Scholar
  20. 20.
    Kim YH, Yang KS, Kim CY, Ryu SH, Song WK, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress. BMB Rep 41:259–265CrossRefPubMedGoogle Scholar
  21. 21.
    Kim YH, Jeong JC, Lee HS, Kwak SS (2013) Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags of dehydration-treated fibrous roots under different abiotic stress conditions. Mol Biol Rep 40:2887–2896CrossRefPubMedGoogle Scholar
  22. 22.
    Jang IC, Park SY, Kim KY, Kwon SY, Kim GK, Kwak SS (2004) Differential expression of 10 sweetpotato peroxidase genes in response to bacterial pathogen, Pectobacterium chrysanthemi. Plant Physiol Biochem 42:451–455CrossRefPubMedGoogle Scholar
  23. 23.
    Kim YH, Lim S, Han SH, Lee JC, Song WK, Bang JW, Kwon SY, Lee HS, Kwak SS (2007) Differential expression of 10 sweetpotato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiol Biochem 45:908–914CrossRefPubMedGoogle Scholar
  24. 24.
    Kim YH, Lee HS, Kwak SS (2010) Differential responses of sweetpotato peroxidases to heavy metals. Chemosphere 81:79–85CrossRefPubMedGoogle Scholar
  25. 25.
    Ha J, Won JC, Jung YH, Yang JW, Lee HU, Nam KJ, Park SC, Jeong JC, Lee SW, Lee DW, Chung JS, Lee JJ, Kim YH (2017) Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweetpotato cultivars to root-knot nematode Meloidogyne incognita. Acta Physiol Plant 39:262CrossRefGoogle Scholar
  26. 26.
    Lee IH, Shim D, Jeong JC, Sung YW, Nam KJ, Yang JW, Ha J, Lee JJ, Kim YH (2019) Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-resistant and susceptible sweetpotato cultivars. Planta 249:431–444CrossRefPubMedGoogle Scholar
  27. 27.
    Park SC, Kim YH, Ji CY, Park S, Jeong JC, Lee HS, Kwak SS (2012) Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS ONE 7:e51502CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kwak SS, Kim SK, Lee MS, Jung KH, Park IH, Liu JR (1995) Acidic peroxidase from suspension cultures of sweetpotato. Phytochemistry 39:981–984CrossRefGoogle Scholar
  30. 30.
    Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287CrossRefPubMedGoogle Scholar
  31. 31.
    Kim SK, Kwak SS, Jung KH, Min SR, Park IH, Liu JR (1994) Selection of plant cell lines for high yields of peroxidase. J Biochem Mol Biol 27:132–137Google Scholar
  32. 32.
    Ludwikow A, Gallois P, Sadowski J (2004) Ozone-induced oxidative stress response in Arabidopsis: transcription profiling by microarray approach. Cell Mol Biol Lett 9:829–842PubMedGoogle Scholar
  33. 33.
    Little D, Gouhier-Darimont C, Bruessow F, Reymond P (2007) Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol 143:784–800CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genom 7:181–191CrossRefGoogle Scholar
  35. 35.
    Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Narusaka Y, Narusaka M, Seki M, Ishida J, Shinozaki K, Nan Y, Park P, Shiraishi T, Kobayashi M (2005) Cytological and molecular analyses of non-host resistance of Arabidopsis thaliana to Alternaria alternata. Mol Plant Pathol 6:615–627CrossRefPubMedGoogle Scholar
  38. 38.
    Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963CrossRefPubMedGoogle Scholar
  39. 39.
    Chassot C, Nawrath C, Metraux JP (2007) Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–980CrossRefPubMedGoogle Scholar
  40. 40.
    Abercrombie J, Halfhill M, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CNJ (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genom 279:339–357CrossRefGoogle Scholar
  42. 42.
    Vercauteren I, Van Der Schueren E, Van Montagu M, Gheysen G (2001) Arabidopsis thaliana genes expressed in the early compatible interaction with root-knot nematodes. Mol Plant Microbe Inter 14:288–299CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yeon Woo Sung
    • 1
    • 2
  • Il Hwan Lee
    • 3
  • Donghwan Shim
    • 3
  • Kang-Lok Lee
    • 1
  • Ki Jung Nam
    • 1
  • Jung-Wook Yang
    • 4
  • Jeung Joo Lee
    • 5
  • Sang-Soo Kwak
    • 6
  • Yun-Hee Kim
    • 1
    Email author
  1. 1.Department of Biology EducationIALS, Gyeongsang National UniversityJinjuRepublic of Korea
  2. 2.Division of Applied Life Science (BK21 Plus)Gyeongsang National UniversityJinjuRepublic of Korea
  3. 3.Department of Forest Bio-resourcesNational Institute of Forest ScienceSuwonRepublic of Korea
  4. 4.National Institute of Crop Science, Rural Development AdministrationSuwonRepublic of Korea
  5. 5.Department of Plant MedicineIALS, Gyeongsang National UniversityJinjuRepublic of Korea
  6. 6.Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonRepublic of Korea

Personalised recommendations