Advertisement

The polymorphism of SMAD3 rs1065080 is associated with increased risk for knee osteoarthritis

  • Chao Lu
  • Jin Shu
  • Yan Han
  • Xiao Yu Ren
  • Ke Xu
  • Hua Fan
  • Ying Pu ChenEmail author
  • Kan PengEmail author
Original Article

Abstract

The mechanism of knee osteoarthritis (OA) is still not clearly elucidated. SMAD3 gene polymorphisms are considered to play a vital role in OA pathogenesis. We thus investigated the relationship of SMAD3 rs1065080 gene polymorphism and susceptibility to knee osteoarthritis in a Chinese Han population. A total of 237 patients and 142 healthy control participants were enrolled in a case–control study. DNA was extracted from peripheral blood samples and genotyped by using the Mass-ARRAY method. Our results revealed that there was a significant difference between patients and healthy controls in the genotype of A and G (p = 0.019); those with a GG genotype had a significant increase in OA risk (OR 2.881, 95% CI 1.993–7.353, p = 0.025). In addition, logistic regression analysis showed that the recessive genetic model decreased OA morbidity (OR 0.648, 95% CI 0.416–0.911, p = 0.046). In conclusion, the GG genotype of rs1065080 was associated with a higher risk of OA and the recessive genetic model decreased the risk of OA.

Keywords

Osteoarthritis Gene polymorphism SMAD 3 rs1065080 Genotype 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81601877).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Informed consent

The study was approved by the Ethics Committee of Xi’an Hong Hui Hospital and performed according to the guidelines of the Declaration of Helsinki. All patients provided written informed consent before their inclusion in the study.

References

  1. 1.
    Ashford S, Williard J (2014) Osteoarthritis: a review. Nurse Pract 39(5):1–8CrossRefGoogle Scholar
  2. 2.
    Pereira D, Ramos E, Branco J (2015) Osteoarthritis. Acta Med Port 28(1):99–106CrossRefGoogle Scholar
  3. 3.
    Mandl LA (2018) Osteoarthritis year in review 2018: clinical. Osteoarthr Cartil 27(3):359–364CrossRefGoogle Scholar
  4. 4.
    Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H et al (2015) Osteoarthritis. Lancet 386(9991):376–387CrossRefGoogle Scholar
  5. 5.
    Coutinho DAR, Ramos Y, Meulenbelt I (2017) Involvement of epigenetics in osteoarthritis. Best Pract Res Clin Rheumatol 31(5):634–648CrossRefGoogle Scholar
  6. 6.
    Jones IA, Togashi R, Wilson ML, Heckmann N, Vangsness CJ (2018) Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol 15:77–90CrossRefGoogle Scholar
  7. 7.
    Gao ST, Lv ZT, Sheng WB (2018) The association between rs12901499 polymorphism in SMAD3 gene and risk of osteoarthritis: a meta-analysis. Ther Clin Risk Manag 14:929–936CrossRefGoogle Scholar
  8. 8.
    Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85(2):47–64CrossRefGoogle Scholar
  9. 9.
    Courtois A, Coppieters W, Bours V, Defraigne JO, Colige A, Sakalihasan N (2017) A novel SMAD3 mutation caused multiple aneurysms in a patient without osteoarthritis symptoms. Eur J Med Genet 60(4):228–231CrossRefGoogle Scholar
  10. 10.
    Aref-Eshghi E, Liu M, Razavi-Lopez SB, Hirasawa K, Harper PE, Martin G et al (2016) SMAD3 is upregulated in human osteoarthritic cartilage independent of the promoter DNA methylation. J Rheumatol 43(2):388–394CrossRefGoogle Scholar
  11. 11.
    Su SL, Yang HY, Lee HS, Huang GS, Lee CH, Liu WS et al (2015) Gene-gene interactions between TGF-beta/Smad3 signalling pathway polymorphisms affect susceptibility to knee osteoarthritis. BMJ Open 5(6):e7931Google Scholar
  12. 12.
    Wang YJ, Shen M, Wang S, Wen X, Han XR, Zhang ZF et al (2017) Inhibition of the TGF-beta1/Smad signaling pathway protects against cartilage injury and osteoarthritis in a rat model. Life Sci 189:106–113CrossRefGoogle Scholar
  13. 13.
    Yao JY, Wang Y, An J, Mao CM, Hou N, Lv YX et al (2003) Mutation analysis of the Smad3 gene in human osteoarthritis. Eur J Hum Genet 11(9):714–717CrossRefGoogle Scholar
  14. 14.
    Liying J, Yuchun T, Youcheng W, Yingchen W, Chunyu J, Yanling Y et al (2013) A SMAD3 gene polymorphism is related with osteoarthritis in a Northeast Chinese population. Rheumatol Int 33(7):1763–1768CrossRefGoogle Scholar
  15. 15.
    Gao ST, Lv ZT, Sheng WB (2018) The association between rs12901499 polymorphism in SMAD3 gene and risk of osteoarthritis: a meta-analysis. Ther Clin Risk Manag 14:929–936CrossRefGoogle Scholar
  16. 16.
    Hong JQ, Wang YX, Li SH, Jiang GY, Hu B, Yang YT et al (2018) Association between SMAD3 gene polymorphisms and osteoarthritis risk: a systematic review and meta-analysis. J Orthop Surg Res 13(1):232CrossRefGoogle Scholar
  17. 17.
    Cohen S, Emery P (2010) The American College of Rheumatology/European league against rheumatism criteria for the classification of rheumatoid arthritis: a game changer. Arthr Rheum 62(9):2592–2594CrossRefGoogle Scholar
  18. 18.
    Sharma AC, Srivastava RN, Srivastava SR, Parmar D, Singh A, Raj S (2017) Association between single nucleotide polymorphisms of SMAD3 and BMP5 with the risk of knee osteoarthritis. J Clin Diagn Res 11(6):C1–C4Google Scholar
  19. 19.
    Bijlsma JW, Berenbaum F, Lafeber FP (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377(9783):2115–2126CrossRefGoogle Scholar
  20. 20.
    Fang J, Xu L, Li Y, Zhao Z (2016) Roles of TGF-beta 1 signaling in the development of osteoarthritis. Histol Histopathol 31(11):1161–1167Google Scholar
  21. 21.
    Zhai G, Dore J, Rahman P (2015) TGF-beta signal transduction pathways and osteoarthritis. Rheumatol Int 35(8):1283–1292CrossRefGoogle Scholar
  22. 22.
    Hong JQ, Wang YX, Li SH, Jiang GY, Hu B, Yang YT et al (2018) Association between SMAD3 gene polymorphisms and osteoarthritis risk: a systematic review and meta-analysis. J. Orthop Surg Res 13(1):232CrossRefGoogle Scholar
  23. 23.
    Zhong F, Lu J, Wang Y, Song H (2018) Genetic variation of SMAD3 is associated with hip osteoarthritis in a Chinese Han population. J Int Med Res 46(3):1178–1186CrossRefGoogle Scholar
  24. 24.
    Hackinger S, Trajanoska K, Styrkarsdottir U, Zengini E, Steinberg J, Ritchie G et al (2017) Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus. Hum Mol Genet 26(19):3850–3858CrossRefGoogle Scholar
  25. 25.
    Zhang L, Zhang L, Zhang H, Wang W, Zhao Y (2018) Association between SMAD3 gene rs12901499 polymorphism and knee osteoarthritis in a Chinese population. J Clin Lab Anal 32(5):e22383CrossRefGoogle Scholar
  26. 26.
    Ma S, Ouyang C, Ren S (2018) Relationship between ADAMTS14/rs4747096 gene polymorphism and knee osteoarthritis in Chinese population. Biosci Rep 38(5):BSR20181413CrossRefGoogle Scholar
  27. 27.
    Poonpet T, Tammachote R, Tammachote N, Kanitnate S, Honsawek S (2016) Association between ADAM12 polymorphism and knee osteoarthritis in Thai population. Knee 23(3):357–361CrossRefGoogle Scholar
  28. 28.
    Liao MF, Gong QW, Liu L, Xiong XY, Zhang Q, Gong CX et al (2018) Association between polymorphism of SMAD3 gene and risk of sporadic intracranial arterial aneurysms in the Chinese Han population. J Clin Neurosci 47:269–272CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Joint Surgery, Xi’an Hong Hui HospitalXi’an Jiaotong University Health Science CenterXi’anPeople’s Republic of China
  2. 2.Department of GynaecologyXi’an Hospital of Traditional Chinese MedicineXi’anPeople’s Republic of China

Personalised recommendations