Molecular Biology Reports

, Volume 46, Issue 4, pp 4409–4421 | Cite as

Maize transcriptomic repertoires respond to gibberellin stimulation

  • Yali Wang
  • Xin Wang
  • Dexiang Deng
  • Yijun WangEmail author
Original Article


Phytohormone gibberellin (GA) serves as hub modulator of diverse biological events. Understanding the transcriptomic features of GA-mediated processes has scientific significance. The transcriptomic landscapes of cereal crops upon GA stimulation remains largely unknown. Herein, to reveal the transcriptomic changes in cereal crop maize under GA treatment, we first selected normal height and GA-sensitive maize dwarf plants from advanced backcross population for GA treatment. RNA-seq analysis discovered multiple protein-coding transcripts that were differentially expressed in GA-treated samples compared to distilled water-treated ones. Some differentially expressed transcripts, namely GA-responsive transcripts in this study, encoded the components of GA pathway, including CPS, KS, and KO enzymes for GA biosynthesis, GA2ox enzymes for GA degradation, DELLA repressors and GID1 receptor for GA signaling. A total of 214 shared GA-responsive transcripts were identified both in GA3-treated normal height and GA-sensitive dwarf samples. Shared GA-responsive transcripts were involved in GA signaling, auxin biosynthesis, ethylene response, the composition and structure of cell wall, chlorophyll biogenesis, and sugar homeostasis. In addition, the convergence and divergence in expression of shared GA-responsive transcripts were observed in GA3-treated normal height and GA-sensitive dwarf plants. Interaction network modeling indicated that some shared GA-responsive transcripts tended to be co-regulated, which increases the complexity of GA-triggered regulation at transcriptomic layer. Results presented here will extend our knowledge of GA-mediated regulatory cascade, and enhance our ability to apply hormone GA knowledge in agricultural practice.


Gibberellin Transcriptomic dynamics Interaction network Advanced backcross population Maize (Zea mays L.) 



This work was supported by the National Natural Science Foundation of China (31571671), the National Key Research and Development Program of China (2016YFD0101002), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJA210002), the High-end Talents Support Plan of Yangzhou University (18HTYZU12), the Qing Lan Project of Yangzhou University (QLYZU201809), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11033_2019_4896_MOESM1_ESM.png (80 kb)
Supplementary material 1 (PNG 79 kb). Fig. S1 GO enrichment analysis of GA-responsive transcripts in GA3–treated WT. The 10 most enriched GO terms in each ontology are shown
11033_2019_4896_MOESM2_ESM.png (80 kb)
Supplementary material 2 (PNG 80 kb). Fig. S2 GO enrichment analysis of GA-responsive transcripts in GA3–treated D11. The 10 most enriched GO terms in each ontology are shown
11033_2019_4896_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 kb)
11033_2019_4896_MOESM4_ESM.xlsx (3 mb)
Supplementary material 4 (XLSX 3031 kb). Table S2 Information of expressed protein-coding transcripts in WT and D11 under distilled water and GA3 treatment
11033_2019_4896_MOESM5_ESM.xlsx (583 kb)
Supplementary material 5 (XLSX 583 kb). Table S3 Information of GA-responsive transcripts with different expression pattern
11033_2019_4896_MOESM6_ESM.xlsx (15 kb)
Supplementary material 6 (XLSX 15 kb). Table S4 Information of shared GA-responsive transcripts between GA3-treated WT and D11


  1. 1.
    Rodrigues C, Vandenberghe LP, de Oliveira J, Soccol CR (2012) New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol 32:263–273CrossRefPubMedGoogle Scholar
  2. 2.
    Wang Y, Zhao J, Lu W, Deng D (2017) Gibberellin in plant height control: old player, new story. Plant Cell Rep 36:391–398CrossRefPubMedGoogle Scholar
  3. 3.
    Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251CrossRefPubMedGoogle Scholar
  4. 4.
    Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463CrossRefPubMedGoogle Scholar
  5. 5.
    Wang Y, Deng D (2014) Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module. Mol Genet Genomics 289:1–9CrossRefPubMedGoogle Scholar
  6. 6.
    Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Xiao Y, Thatcher S, Wang M, Wang T, Beatty M, Zastrow-Hayes G, Li L, Li J, Li B, Yang X (2016) Transcriptome analysis of near-isogenic lines provides molecular insights into starch biosynthesis in maize kernel. J Integr Plant Biol 58:713–723CrossRefPubMedGoogle Scholar
  8. 8.
    Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N, Kaeppler SM, Buell CR (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li C, Qiao Z, Qi W, Wang Q, Yuan Y, Yang X, Tang Y, Mei B, Lv Y, Zhao H, Xiao H, Song R (2015) Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. Plant Cell 27:532–545CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefPubMedGoogle Scholar
  12. 12.
    Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17CrossRefPubMedGoogle Scholar
  13. 13.
    Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048CrossRefPubMedGoogle Scholar
  14. 14.
    Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mutasa-Göttgens ES, Joshi A, Holmes HF, Hedden P, Göttgens B (2012) A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics 13:99CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chai L, Li Y, Chen S, Perl A, Zhao F, Ma H (2014) RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. Plant Sci 229:215–224CrossRefPubMedGoogle Scholar
  17. 17.
    Cheng C, Jiao C, Singer SD, Gao M, Xu X, Zhou Y, Li Z, Fei Z, Wang Y, Wang X (2015) Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 16:128CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang Y, Lu W, Chen Y, Deng D, Ding H, Bian Y, Yin Z, Zhu Y, Zhao J (2016) Revealing physiological and genetic properties of a dominant maize dwarf Dwarf11 (D11) by integrative analysis. Mol Breed 36:31CrossRefGoogle Scholar
  19. 19.
    Wang Y, Deng D, Ding H, Xu X, Zhang R, Wang S, Bian Y, Yin Z, Chen Y (2013) Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: physiological and transcriptomic evidence. PLoS ONE 8:e66466CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO:TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20:3710–3715CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gene Ontology Consortium (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43:D1049–D1056CrossRefGoogle Scholar
  25. 25.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361CrossRefPubMedGoogle Scholar
  26. 26.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452CrossRefGoogle Scholar
  27. 27.
    Fujioka S, Yamane H, Spray CR, Katsumi M, Phinney BO, Gaskin P, Macmillan J, Takahashi N (1988) The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA 85:9031–9035CrossRefPubMedGoogle Scholar
  28. 28.
    Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868CrossRefPubMedGoogle Scholar
  29. 29.
    Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822CrossRefPubMedGoogle Scholar
  30. 30.
    Middleton AM, Úbeda-Tomás S, Griffiths J, Holman T, Hedden P, Thomas SG, Phillips AL, Holdsworth MJ, Bennett MJ, King JR, Owen MR (2012) Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc Natl Acad Sci USA 109:7571–7576CrossRefPubMedGoogle Scholar
  31. 31.
    Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadí D, Blázquez MA (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 109:13446–13451CrossRefPubMedGoogle Scholar
  32. 32.
    Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C (2011) Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 23:2184–2195CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Qi W, Sun F, Wang Q, Chen M, Huang Y, Feng YQ, Luo X, Yang J (2011) Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol 157:216–228CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jiang X, Li H, Wang T, Peng C, Wang H, Wu H, Wang X (2012) Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant J 72:768–780CrossRefPubMedGoogle Scholar
  35. 35.
    Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M (2016) AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun 7:13245CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
  2. 2.Jiangsu Co-Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
  3. 3.College of AgricultureAnhui Science and Technology UniversityFengyangChina

Personalised recommendations