Molecular Biology Reports

, Volume 46, Issue 4, pp 4027–4037 | Cite as

Generation of single-chain Fv antibody fragments against Mu-2-related death-inducing gene in Escherichia coli

  • Dimuthu Dhammika Wickramanayake
  • Jun-Ha Choi
  • Juhyun Shin
  • Jae-Wook OhEmail author
Original Article


Mu-2-related death-inducing (MuD) gene is involved in apoptosis in tumor cells. Although we have previously produced mouse monoclonal antibodies (MAbs) that specifically recognize human MuD, the application scope of MuD MAbs was restricted due to their mouse origin. Therefore, we attempted the generation of single-chain variable fragment (scFv) against MuD. The heavy- and light-chain variable region genes from two MuD hybridomas were isolated by PCR and joined by DNA encoding a (Gly4Ser1)3 linker. These scFv fragments were cloned into a phagemid vector and expressed as E-tagged fusion proteins in Escherichia coli HB2151. The reactivity of selected Abs was evaluated using ELISA. Selected MuDscFv Abs specifically recognized human MuD, retaining ~ 50% potency of the parent MAbs. MuDscFv-M3H9 recognized the middle region of MuD, while MuDscFv-C22B3 recognized a broad region. Intracellular expression of MuDscFvs-C22B3 protected cells from TRAIL-induced apoptosis. These MuDscFv Abs may help in the study of intracellular signaling pathway centered on MuD and of drug use target and points.


Mu-2-related death-inducing gene Antibody engineering E. coli expression Single-chain variable fragment antibody Apoptosis 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014R1A1A2056388 and NRF-2016R1D1A1B03935382).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Choi JH, Lim JB, Wickramanayake DD, Wagley Y, Kim J, Lee HC, Seo HG, Kim TH, Oh JW (2016) Characterization of MUDENG, a novel anti-apoptotic protein. Oncogenesis 5:e221. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lee MR, Shin JN, Moon AR, Park SY, Hong G, Lee MJ, Yun CW, Seol DW, Piya S, Bae J, Oh JW, Kim TH (2008) A novel protein, MUDENG, induces cell death in cytotoxic T cells. Biochem Biophys Res Commun 370(3):504–508. CrossRefPubMedGoogle Scholar
  3. 3.
    Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, van Hogezand RA, Podolsky DK, Sands BE, Braakman T, DeWoody KL, Schaible TF, van Deventer SJ (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340(18):1398–1405. CrossRefGoogle Scholar
  4. 4.
    Hirst J, Barlow LD, Francisco GC, Sahlender DA, Seaman MN, Dacks JB, Robinson MS (2011) The fifth adaptor protein complex. PLoS Biol 9(10):e1001170. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wagley Y, Choi JH, Wickramanayake DD, Choi GY, Kim CK, Kim TH, Oh JW (2013) A monoclonal antibody against human MUDENG protein. Monoclon Antib Immunodiagn Immunother 32(4):277–282. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 85(16):5879–5883. CrossRefPubMedGoogle Scholar
  7. 7.
    Roh J, Byun SJ, Seo Y, Kim M, Lee JH, Kim S, Lee Y, Lee KW, Kim JK, Kwon MH (2015) Generation of a chickenized catalytic anti-nucleic acid antibody by complementarity-determining region grafting. Mol Immunol 63(2):513–520. CrossRefPubMedGoogle Scholar
  8. 8.
    Pavlinkova G, Colcher D, Booth BJ, Goel A, Wittel UA, Batra SK (2001) Effects of humanization and gene shuffling on immunogenicity and antigen binding of anti-TAG-72 single-chain Fvs. Int J Cancer 94(5):717–726. CrossRefPubMedGoogle Scholar
  9. 9.
    Kunik V, Ashkenazi S, Ofran Y (2012) Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res 40(Web Server issue):W521–W524.
  10. 10.
    MacCallum RM, Martin AC, Thornton JM (1996) Antibody–antigen interactions: contact analysis and binding site topography. J Mol Biol 262(5):732–745. CrossRefPubMedGoogle Scholar
  11. 11.
    Heng CK, Othman RY (2006) Bioinformatics in molecular immunology laboratories demonstrated: modeling an anti-CMV scFv antibody. Bioinformation 1(4):118–120CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zemlin M, Klinger M, Link J, Zemlin C, Bauer K, Engler JA, Schroeder HW Jr, Kirkham PM (2003) Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J Mol Biol 334(4):733–749. CrossRefPubMedGoogle Scholar
  14. 14.
    Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 9(5):497–501. CrossRefPubMedGoogle Scholar
  15. 15.
    Zou L, Xu Y, Li Y, He Q, Chen B, Wang D (2014) Development of a single-chain variable fragment antibody-based enzyme-linked immunosorbent assay for determination of fumonisin B(1) in corn samples. J Sci Food Agric 94(9):1865–1871. CrossRefPubMedGoogle Scholar
  16. 16.
    Liu A, Ye Y, Chen W, Wang X, Chen F (2015) Expression of V(H)-linker-V(L) orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1 in Escherichia coli. J Ind Microbiol Biotechnol 42(2):255–262. CrossRefPubMedGoogle Scholar
  17. 17.
    Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, Travers S, Rachmilewitz D, Hanauer SB, Lichtenstein GR, de Villiers WJ, Present D, Sands BE, Colombel JF (2005) Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 353(23):2462–2476. CrossRefPubMedGoogle Scholar
  18. 18.
    Haritoglou C, Kook D, Neubauer A, Wolf A, Priglinger S, Strauss R, Gandorfer A, Ulbig M, Kampik A (2006) Intravitreal bevacizumab (Avastin) therapy for persistent diffuse diabetic macular edema. Retina 26(9):999–1005. CrossRefPubMedGoogle Scholar
  19. 19.
    Ortholan C, Durivault J, Hannoun-Levi JM, Guyot M, Bourcier C, Ambrosetti D, Safe S, Pages G (2010) Bevacizumab/docetaxel association is more efficient than docetaxel alone in reducing breast and prostate cancer cell growth: a new paradigm for understanding the therapeutic effect of combined treatment. Eur J Cancer 46(16):3022–3036. CrossRefPubMedGoogle Scholar
  20. 20.
    Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8(7):1177–1194. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lovell DJ, Ruperto N, Goodman S, Reiff A, Jung L, Jarosova K, Nemcova D, Mouy R, Sandborg C, Bohnsack J, Elewaut D, Foeldvari I, Gerloni V, Rovensky J, Minden K, Vehe RK, Weiner LW, Horneff G, Huppertz HI, Olson NY, Medich JR, Carcereri-De-Prati R, McIlraith MJ, Giannini EH, Martini A, Pediatric Rheumatology Collaborative Study Group, Pediatric Rheumatology International Trials Organization (2008) Adalimumab with or without methotrexate in juvenile rheumatoid arthritis. N Engl J Med 359(8):810–820.
  22. 22.
    Deng Y, Kizer M, Rada M, Sage J, Wang X, Cheon DJ, Chung AJ (2018) Intracellular delivery of nanomaterials via an inertial microfluidic cell hydroporator. Nano Lett 18(4):2705–2710. CrossRefPubMedGoogle Scholar
  23. 23.
    Wang Q, Fan H, Liu Y, Yin Z, Cai H, Liu J, Wang Z, Shao M, Sun X, Diao J, Liu Y, Tong L, Fan Q (2014) Curcumin enhances the radiosensitivity in nasopharyngeal carcinoma cells involving the reversal of differentially expressed long non-coding RNAs. Int J Oncol 44(3):858–864. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Animal Biotechnology, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulKorea
  2. 2.Department of Livestock Production, Faculty of Agricultural SciencesSabaragamuwa University of Sri LankaBelihuloyaSri Lanka

Personalised recommendations