Advertisement

Advances in cloning, structural and bioremediation aspects of nitrile hydratases

  • K. Supreetha
  • Saroja Narsing RaoEmail author
  • D. Srividya
  • H. S. Anil
  • S. Kiran
Mini Review

Abstract

Nitrile hydratase (NHase) is a prominent enzyme in many microorganisms for its nitrile metabolism. The potentiality in the bioconversion of nitriles to its high-value amides has been extensively used in industries for the production of acrylamide and nicotinamide which are essential chemicals. Enzymologists are still considering NHases for its potential biotechnological applications including biotransformations and bioremediations. But most of the nitrile hydratases have limitations like the low expression, low thermostability and enantioselectivity. Though considerable data has been generated in the area of gene configuration, crystal structure, kinetic mechanism and photoreactivity of NHases, there is a need for constant improvement to develop a robust biocatalyst for bioremediation of toxic nitriles. With these considerations, in the present review, we report advances with the main focus to structure, catalytic mechanism, cloning strategy, gene expression, bioinformatic tools, metagenomics, thermostability and current bioremediation applications of NHases.

Keywords

Nitrile hydratase Structure Cloning strategy Gene expression Genomics Thermostability Metagenomics Bioremediation 

Notes

Acknowledgements

We thank profusely Mr Vinay Kumar Rao, Temasek life sciences laboratory, Singapore for manuscript preparation. Our thanks are to Drs Govindappa M, Rajeswari N and Mahesh S, Department of Biotechnology, DSCE, Bengaluru for technical assistance and financial assistance from Karnataka Innovation and Technology Society (K-Tech), Govt. of Karnataka, India.

Compliance with ethical standards

Conflict of interest

The Authors of this review article declare that there is no conflict of interest.

Research involving human and animal participant

This manuscript does not contain any experiments with human participants or animals performed by any of the authors.

References

  1. 1.
    Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17:284–292Google Scholar
  2. 2.
    Wohlgemuth R (2010) Biocatalysis—the key to sustainable industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    van Pelt S, Quignard S, Kubáč D, Sorokin DY, van Rantwijk F, Sheldon RA (2008) Nitrile hydratase CLEAs: the immobilization and stabilization of an industrially important enzyme. Green chemistry 10(4):395–400Google Scholar
  4. 4.
    Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194Google Scholar
  5. 5.
    Asano Y (2013) Handbook of proteolytic enzymes, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Marron AO, Akam M, Walker G (2012) Nitrile hydratase genes are present in multiple eukaryotic supergroups. PLoS ONE 7(4):e32867Google Scholar
  7. 7.
    Mylerova V, Martinkova L (2003) Synthetic applications of nitrile-converting enzymes. Curr Org Chem 7:1–17Google Scholar
  8. 8.
    Prasad S, Raj J, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–774Google Scholar
  9. 9.
    Mascharak PK (2002) Structural and functional models of nitrile hydratase. Coord Chem Rev 225:201–214Google Scholar
  10. 10.
    Payne MS, Wu S, Fallon RD, Tudor G, Stieglitz B, Turner IM Jr, Nelson MJ (1997) A stereoselective cobalt-containing nitrile hydratase. Biochemistry 36(18):5447–5454Google Scholar
  11. 11.
    Okamoto S, Eltis LD (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 65(3):828–838Google Scholar
  12. 12.
    Kovacs J (2004) Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes. Chem Rev 104(2):825–848Google Scholar
  13. 13.
    Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400Google Scholar
  14. 14.
    Sugiura Y, Kuwahara J, Nagasawa T, Yamada H (1987) Nitrile hydratase: the first non-heme iron enzyme with a typical low spin Fe(III) active centre. J Am Chem Soc 109:5848–5850Google Scholar
  15. 15.
    Popescu VC, Munck E, Fox BG, Sanakis Y, Cummings JG, Turner IM, Nelson MJ (2001) Mossbauer and EPR studies of the photoactivation of nitrile hydratase. Biochemistry 40:7984–7991Google Scholar
  16. 16.
    Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44Google Scholar
  17. 17.
    Huang W, Jia J, Cummings J, Nelson M, Schneder G, Lindqvist Y (1997) Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 5:691–699Google Scholar
  18. 18.
    Nagasawa T, Takeuchu K, Yamada H (1991) Characterization of new cobalt containing nitrile hydratase purified from urea-induced cells of R. rhodochrous J1. Eur J Biochem 196:581–589Google Scholar
  19. 19.
    Komeda H, Kobayashi M, Shimizu S (1996) A novel gene cluster including the R. rhodochrous J1 nhiBA genes encoding a new low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. J Biol Chem 271:15796–15802Google Scholar
  20. 20.
    Hashimoto K, Suzuki H, Taniguchi K, Noguchi T, Yohda M, Odaka M (2008) Catalytic mechanism of nitrile hydratase proposed by time-resolved X-ray crystallography using a novel substrate, tert-butylisonitrile. J Biol Chem 283:36617–36623Google Scholar
  21. 21.
    Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288:1169–1174Google Scholar
  22. 22.
    Sharma PK, Bhalla TC (2016) In silico analysis of physicochemical properties of hyperthermophilic and thermophilic nitrile hydratases. Int J Curr Microbiol App Sci 5(4):596–607Google Scholar
  23. 23.
    Yamanaka Y, Kato Y, Hashimoto K, Iida K, Nagasawa K, Nakayama H, Dohmae N, Noguchi K, Noguchi T, Yohda M, Odaka M (2015) Time-resolved crystallography of the reaction intermediate of nitrile hydratase: revealing a role for the cysteine sulfenic acid ligand as a catalytic nucleophile. Angew Chem Int Ed Engl 54:10763–10767Google Scholar
  24. 24.
    Martinez S, Wu R, Krzywda K, Opalka V, Chan H, Liu D, Holz RC (2015) Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1. J Biol Inorg Chem 20(5):885–894Google Scholar
  25. 25.
    Martinez S, Wu R, Sanishvili R, Liu D, Holz R (2014) The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile. J Am Chem Soc 136(4):1186–1189Google Scholar
  26. 26.
    Brodkin HR, Novak WR, Milne AC, D’Aquino JA, Karabacak NM, Goldberg IG, Agar JN, Payne MS, Petsko GA, Ondrechen MJ (2011) Evidence of the participation of remote residues in the catalytic activity of co-type nitrile hydratase from Pseudomonas putida. Biochemistry 50:4923–4935Google Scholar
  27. 27.
    Arakawa T, Kawano Y, Kataoka S, Katayama Y, Kamiya N, Yohda M, Odaka M (2007) Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) centre. J Mol Biol 366(5):1497–1509Google Scholar
  28. 28.
    Kuhn ML, Martinez S, Gumataotao N, Holz RC (2012) The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochem Biophys Res Commun 424(3):365–370Google Scholar
  29. 29.
    Kayanuma M, Shoji M, Yohda M, Odaka M, Shigeta Y (2016) Catalytic mechanism of nitrile hydratase subsequent to cyclic intermediate formation: a QM/MM Study. J Phys Chem B 120(13):3259–3266Google Scholar
  30. 30.
    Hopmann KH (2014) Full reaction mechanism of nitrile hydratase: a cyclic intermediate and an unexpected disulfide switch. Inorg Chem 53(6):2760–2762Google Scholar
  31. 31.
    Zhou Z, Hashimoto Y, Cui T, Washizawa Y, Mino H (2010) Kobayashi M (2010) Unique biogenesis of high-molecular-mass multimeric metalloenzyme nitrile hydratase: intermediates and a proposed mechanism for self-subunit swapping maturation. Biochemistry 49:9638–9648Google Scholar
  32. 32.
    Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M (2008) Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci USA 105:14849–14854Google Scholar
  33. 33.
    Zhou Z, Hashimoto Y, Kobayashi M (2009) Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal-ligand cysteine residues and insertion of cobalt. J Biol Chem 284:14930–14938Google Scholar
  34. 34.
    Ikehata O, Nishiyama M, Horinouchi S, Beppu T (1989) Primary structure of NHase deduced from the nucleotide sequence of a Rhodococcus sp. and its expression in E. coli. Eur J Biochem 181:563–570Google Scholar
  35. 35.
    Kobayashi M, Nishiyama M, Nagasawa T, Horinouchi S, Beppu T, Yamada H (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim Biophys Acta 1129:23–33Google Scholar
  36. 36.
    Pratush A, Seth A, Bhalla TC (2012) Cloning, sequencing, and expression of nitrile hydratase gene of a mutant 4D strain of Rhodococcus rhodochrous PA 34 in E. coli. Appl Biochem Biotechnol 168(3):465–486Google Scholar
  37. 37.
    Shi Y, Huimin Yu, Sun X, Tian Z, Shen Z (2004) Cloning of the nitrile hydratase gene from Nocardia sp. in Escherichia coli and Pichia pastoris and its functional expression using site-directed mutagenesis. Enzyme Microbial Technol 35(6–7):557–562Google Scholar
  38. 38.
    Kim S-H, Oriel P (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme Microbial Technol 27(7):492–501Google Scholar
  39. 39.
    Stevens JM, Saroja NR, Jaouen M, Belghazi M, Schmitter J-M, Mansuy D, Artaud I, Sari M-A (2003) Chaperone-assisted expression, purification, and characterization of recombinant nitrile hydratase NI1 from Comamonas testosterone. Protein Expr Purif 29(1):70–76Google Scholar
  40. 40.
    Precious S, Goulas P, Duran R (2001) Rapid and specific identification of nitrile hydratase (NHase)—encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol Lett 204:155–161Google Scholar
  41. 41.
    Lu J, Zheng Y, Yamagishi H, Odaka M, Tsujimura M, Maeda M, Endo I (2003) Motif CXCC in nitrile hydratase activator is critical for NHase biogenesis in vivo. FEBS Lett 553(3):391–396Google Scholar
  42. 42.
    Precigou S, Wieser M, Pommares P, Goulas P, Duran R (2004) Rhodococcus pyridinovorans MW3 a bacterium producing a nitrile hydratase. Biotech Lett 26:1379–1384Google Scholar
  43. 43.
    Pei X, Zhang H, Meng L, Xu G, Wu J (2013) Efficient cloning and expression of a thermostable nitrile hydratase in Escherichia coli using an auto-induction fed-batch strategy. Process Biochem 48(12):1921–1927Google Scholar
  44. 44.
    Daiana D, Rose DR, Glick Bernard R (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. Strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microbiol 80:4640–4649Google Scholar
  45. 45.
    Sun W, Zhu L, Chen X, Chen P, Yang L, Ding W, Zhou Z, Liu Y (2016) Successful expression of the Bordetella petrii nitrile hydratase activator P14 K and the unnecessary role of Ser115. BMC Biotechnol 16:21Google Scholar
  46. 46.
    Pratush A, Seth A, Bhalla TC (2017) Expression of nitrile hydratase gene of the mutant 4D strain of Rhodococcus rhodochrous PA 34 in Pichia pastoris. Biocatal Biotransform 35(1):19–26Google Scholar
  47. 47.
    Pei X, Wang Q, Meng L, Li J, Yang Z, Yin X, Yang L, Chen S, Wu J (2015) Chaperone-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. J Biotechnol 203:9–16Google Scholar
  48. 48.
    Liebeton K, Eck J (2004) Identification and expression in E. coli of novel nitrile hydratases from the metagenome. Eng Life Sci 4(6):557–562Google Scholar
  49. 49.
    Nojiri M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K, Endo I (1999) J Biochem 125:696–704Google Scholar
  50. 50.
    Rzeznicka K, Schätzle S, Böttcher D, Klein J, Bornscheuer UT (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterization. Appl Microbiol Biotechnol 85:1417–1425Google Scholar
  51. 51.
    Kwon WS, Da Silva NA, Kellis JT Jr (1996) Relationship between thermal stability, degradation rate and expression yield of barnase variants in the periplasm of Escherichia coli. Protein Eng 9:1197–1202Google Scholar
  52. 52.
    Petrillo KL, Wu S, Hann EC, Cooling FB, Ben-Bassat A, Gavagan JE, DiCosimo R, Payne MS (2005) Over-expression in Escherichia coli of a thermally stable and regio-selective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D. Appl Microbiol Biotechnol 67(5):664–670Google Scholar
  53. 53.
    Cameron RA, Sayed M, Cowan DA (2005) Molecular analysis of the nitrile catabolism operon of the thermophile Bacillus pallidus RAPc8. Biochim Biophys Acta 1725:35–46Google Scholar
  54. 54.
    Okamoto S, Van Petegem F, Patrauchan MA, Eltis LD (2010) Metallochaperone: involved in the maturation of a cobalt-dependent nitrile hydratase. J Biol Chem 285:25126–25133Google Scholar
  55. 55.
    Liu Y, Cui W, Fang Y, Yuechun Yu, Cui Y, Xia Y, Kobayashi M, Zhou Z (2013) Strategy for successful expression of the Pseudomonas putida nitrile hydratase activator P14 K in Escherichia coli. BMC Biotechnol 13:48Google Scholar
  56. 56.
    Zhang H, Li M, Li J, Li F, Li M, Li F, Xiong M (2017) Chaperone-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. Process Biochem 56:37–44Google Scholar
  57. 57.
    Wu S, Fallon RD, Payne MS (1997) Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: activity requires a novel downstream protein. Appl Microbiol Biotechnol 48(6):704–708Google Scholar
  58. 58.
    Song L, Wang M, Yang X, Qian S (2007) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270. Biotechnol J 2(6):717–724Google Scholar
  59. 59.
    Hashimoto Y, Nishiyama M, Yu F, Watanabe I, Horinouchi S, Beppu T (1992) J Gen Microbiol 138:1003–1010Google Scholar
  60. 60.
    Na D, Lee D (2010) RBS Designer: software for designing synthetic ribosome binding sites that yields the desired level of protein expression. Bioinformatics 26:2633–2634Google Scholar
  61. 61.
    De Smit M, Van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668Google Scholar
  62. 62.
    Makrides S (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Mol Biol Rev 60:512Google Scholar
  63. 63.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950Google Scholar
  64. 64.
    Icev A, Ruiz C, Ryder E (2003) Distance-enhanced association rules for gene expression. Gene 10:34–40Google Scholar
  65. 65.
    Lan Y, Zhang X, Liu Z, Zhou L, Shen R, Zhong X, Cui W, Zhou Z (2017) Overexpression and characterization of two types of nitrile hydratases from Rhodococcus rhodochrous J1. PLoS ONE 23:e0179833Google Scholar
  66. 66.
    Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K, Bull AT (1998) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2:269–277Google Scholar
  67. 67.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  68. 68.
    Bunch AW (1998) Nitriles in biotechnology. In: Rehm HJ, Reed G (eds) Biotransformations, vol 8a. Wiley-VCH, Weinheim, pp 277–324Google Scholar
  69. 69.
    Cowan DA (2000) Microbial genomes the untapped resource. Trends Biotechnol 18:14–16Google Scholar
  70. 70.
    Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740Google Scholar
  71. 71.
    Brandao Pedro F B, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69(10):5754–5766Google Scholar
  72. 72.
    Co Lorenz P, Köhler B, Wolf M, Eck J, Zinke H (2000) Expression cloning of metagenome DNA from soil. Biotechnol Book of Abstr 2:306Google Scholar
  73. 73.
    Verseck S, Liebeton K, Juergen E (2004) Nitrile hydratases from metagenome libraries. European patent No. CA 2,557,476Google Scholar
  74. 74.
    Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):132Google Scholar
  75. 75.
    Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15(6):387–396Google Scholar
  76. 76.
    Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195Google Scholar
  77. 77.
    Xia Y, Cui W, Liu Z, Zhou L, Cui Y, Kobayashi M, Zhou Z (2016) Construction of a subunit-fusion nitrile hydratase and discovery of an innovative metal ion transfer pattern. Sci Rep 6:19183.  https://doi.org/10.1038/Srep19183 Google Scholar
  78. 78.
    Foerstner KU, Doerks T, Muller J, Raes J, Bork P (2008) A nitrile hydratase in the eukaryote monosiga brevicollis. PLoS ONE 3(12):e3976Google Scholar
  79. 79.
    Nagasawa T, Nanba H, Ryuno K, Takeuchi K, Yamada H (1987) Nitrile hydratase of Pseudomonas chlororaphis B23 Purification and characterization. Eur J Biochem 162(3):691–698Google Scholar
  80. 80.
    Li W, Zhang Y, Yang H (1992) Formation and purification of nitrile hydratase from Corynebacterium pseudodiphteriticum ZBB-41. Appl Biochem Biotechnol 36(1992):171–177Google Scholar
  81. 81.
    Zhao A, Li W, Yang H (1995) Production and properties of 3-cyanopyridine hydratase in Rhodococcus equi SHB-121. Appl Biochem Biotechnol 53:65–73Google Scholar
  82. 82.
    Pereira RA, Graham D, Rainey FA, Cowan DA (1998) A novel thermostable nitrile hydratase. Extremophiles 2:347Google Scholar
  83. 83.
    Prasad S, Raj J, Bhalla TC (2009) Purification of a hyperactive nitrile hydratase from resting cells of Rhodococcus rhodochrous PA-34. Indian J Microbiol 49:237–243Google Scholar
  84. 84.
    Pollak P, Remender G, Hagedorn F, Gelbke H-P, Hawkins SB, Schulz G (eds) (1991) Ullman’s Encyclopedia of industrial chemistry, vol 5(A17). Wiley-VCH, Weinheim, pp 363–376Google Scholar
  85. 85.
    Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353Google Scholar
  86. 86.
    Alagh P, Gaganjyot Kaur BS, Kumar A (2015) A green chemistry approach to bioremediate acetonitrile. World J Pharm Res 4(11):1664–1674Google Scholar
  87. 87.
    Kao CM, Chen KF, Liu JK, Chou SM, Chen SC (2006) Enzymatic degradation of nitriles by Klebsiella oxytoca. Appl Microbiol Biotechnol 1(2):228–233Google Scholar
  88. 88.
    Wang CC, Lee CM (2001) Denitrification with acrylamide by a pure culture of bacteria isolated from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system. Chemosphere 44:1047Google Scholar
  89. 89.
    Prabhu CS, Thatheyus AJ (2007) Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. Int Biodeterior Biodegrad 60:69–73Google Scholar
  90. 90.
    Blanchard LA, Brennecke JF (2001) Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind Eng Chem Res 40(1):287–292Google Scholar
  91. 91.
    Saroja N, Shamala TR, Tharanathan RN (2000) Biodegradation of S-g-PAN a packaging material using Bacillus cereus. Process Biochem 36:119–125Google Scholar
  92. 92.
    Wyatt JM, Knowles CJ (1995) Microbial degradation of acrylonitrile waste effluents: the degradation of effluents and condensates from the manufacture of acrylonitrile. Int Deter Biodegrad 35(1–3):227–248Google Scholar
  93. 93.
    Deshkar A, Dhamorikar N, Godbole S, Krishnamurthi K, Saravanadevi S, Vijay R, Kaul S, Chakrabarti T (2003) Bioremediation of soil contaminated with organic compounds with special reference to acrylonitrile. Ann Chem 93(9–10):729–737Google Scholar
  94. 94.
    Chen J, Zheng R-C, Zheng Y-G, Shen Y-C (2009) Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Engin/Biotechnol 113:33–77Google Scholar
  95. 95.
    Holtze MS, Sørensen J, Hansen HCB, Aamand J (2006) Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation 17:503–510Google Scholar
  96. 96.
    Martinkova L, Vejvoda V, Kaplan O, Kubáč D, Malandra A, Cantarella M, Bezouška K, Křen V (2009) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670Google Scholar
  97. 97.
    Muller D, Gabriel J (1999) Bacterial degradation of the herbicide bromoxynil by Agrobacterium radiobacter in the biofilm. Folia Microbiol 44:377–379Google Scholar
  98. 98.
    Odaka M, Fujii K, Hoshino M, Noguchi T, Tsujimura M, Nagashima S, Yohda M, Nagamune T, Inoue Y, Endo I (1997) Activity regulation of photoreactive nitrile hydratase by nitric oxide. J Am Chem Soc 119(16):3785–3791Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyDayananda Sagar College of Engineering Affiliated to Visveswaraya Technological UniversityBengaluruIndia
  2. 2.Pesticide Residue and Food Quality Analysis LaboratoryUniversity of Agricultural SciencesRaichurIndia

Personalised recommendations