Advertisement

Isolation and characterization of 12 microsatellite loci in Epipedobates anthonyi (Amphibia: Anura: Dendrobatidae) for population genetic analysis

  • Mónica I. Páez-Vacas
  • Nora H. OleasEmail author
Short Communication
  • 27 Downloads

Abstract

Tropical anurans are among the most diverse and vulnerable organisms on Earth, yet the evolutionary mechanisms behind their diversity remain relatively unexplored. Epipedobates anthonyi is a poison frog that inhabits southern Ecuador and northern Peru along a broad elevational range (0–1800 m). Throughout its range, this species exhibits variation in phenotypic traits, such as color, advertisement calls, and alkaloid composition. The aim of this study is to isolate and characterize microsatellite loci to investigate patterns of genetic variation within the species. Using a next-generation sequencing approach to screen an enriched genomic library, we report twelve polymorphic microsatellite loci. The number of alleles per locus ranged from 7 to 15 per population. For the two populations tested, mean observed heterozygosity was 0.69 and 0.79, and mean expected heterozigosity was 0.84 and 0.85 respectively. Only locus EAN002 showed significant departure of HWE in both populations. None of the loci showed consistent null alleles in both populations. Also, no evidence of linkage disequilibrium was found across loci. In this paper, we report for the first time 12 microsatellite loci for E. anthonyi. These markers will be used to further elucidate evolutionary mechanisms underlying genetic and phenotypic variation across the species’ range.

Keywords

Epipedobates anthonyi Frogs Microsatellites Population genetics 

Notes

Acknowledgements

This study was supported by the Secretaría Nacional de Educación Superior, Ciencia y Tecnología del Ecuador. We thank Luis A. Coloma, Lola Guarderas, and Elicio Tapia at Centro Jambatu for Amphibian Research and Conservation (Quito, Ecuador) for assistance during fieldwork. We thank W. Chris Funk and Sarah Fitzpatrick for their assistance during microsatellites development and for reviewing earlier versions of the manuscript. All animals were collected and analyzed following Ecuadorian legislation (No. 003-11 IC-FAU-DNB/MA), and a Colorado State University Institutional Animal Care and Use Protocol (IACUC #12-3676A).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tarvin RD, Powell E, Santos JC, Ron SR, Cannatella DC (2017) The birth of aposematism: high phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol Phylogenetics Evol 109:283–295CrossRefGoogle Scholar
  2. 2.
    Noble GK (1921) Five new species of Salientia from South America. Am Mus Novit 29:1–7Google Scholar
  3. 3.
    Coloma LA, Frenkel C, Ron SR (2012) Epipedobates anthonyi. In: Ron SR, Guayasamin JM, Yanez-Muñoz MH, Merino-Viteri A, Ortiz DA, Nicolalde DA (eds). 2016. AmphibiaWebEcuador. Version 2016.0. Museo de Zoología, Pontificia Universidad Católica del Ecuador. (http://zoologia.puce.edu.ec/vertebrados/anfibios/FichaEspecie.aspx?Id=1263. Accessed 17 Aug 2017
  4. 4.
    Cipriani I, Rivera M (2009) Detección de alcaloides en la piel de cuatro especies de anfíbios ecuatorianos (Anura: Dendrobatidae). Rev Ecuat Med Cien Bio 30:42–49Google Scholar
  5. 5.
    Santos JC, Baquero M, Barrio-Amorós CL, Coloma LA, Erdtmann LK, Lima AP, Cannatella DC (2014) Aposematism increases acoustic diversification and speciation in poison frogs. Proc R Soc Lond B Biol Sci 281:9CrossRefGoogle Scholar
  6. 6.
    Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629CrossRefGoogle Scholar
  7. 7.
    Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus specific primer design. Mol Ecol Resour 8:92–94CrossRefGoogle Scholar
  8. 8.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buston S, Cooper A, Markowitx S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefGoogle Scholar
  9. 9.
    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefGoogle Scholar
  10. 10.
    Peakall ROD, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295CrossRefGoogle Scholar
  11. 11.
    Peakall ROD, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  12. 12.
    Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538CrossRefGoogle Scholar
  13. 13.
    Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio AmbienteUniversidad Tecnológica IndoaméricaQuitoEcuador
  2. 2.Department of Biology, Graduate Degree Program in EcologyColorado State UniversityFort CollinsUSA

Personalised recommendations