Advertisement

Molecular Biology Reports

, Volume 46, Issue 2, pp 2405–2415 | Cite as

Aluminum doped carbon nanodots as potent adjuvants on the mammalian macrophages

  • Furkan AyazEmail author
  • Melis Özge Alaş
  • Melike Oğuz
  • Rükan GençEmail author
Original Article

Abstract

In this manuscript, we aimed to report the synthesis of aluminum (Al) incorporated carbon nanodots (CD) and their activities on the immune cells. A green synthesis method involving the in situ doping of the nanodot was conducted. Synthesized nanodots immunomodulatory and immunostimulatory activities were tested in vitro on the macrophages. The produced carbon dots were water-soluble, fluorescent and monodispersed, with an average diameter of around 10–20 nm. After Al-doping, their surface properties, stability, crystallinity, as well as their fluorescent and optical properties were evaluated. These Al-CDs displayed no cytotoxicity and enhanced the pro-inflammatory activities of the mammalian macrophages with much lower aluminum concentrations (‰ 20) compared to that of conventional aluminum salt, by virtue of which they have the potential to serve as safe and effective adjuvant carrier. The stability of the nanocarriers was found to be persistent for over 3 months at room temperature with no significant formation of the aggregates. These results support the promise of such nanodots as the new generation non-toxic adjuvant candidates.

Graphical abstract

Al incorporation changed the activity of carbon nanodot (CD). Plain CD did not have major affect on the inflammatory function of macrophages. Al incorporated CD was able to stimulate the macrophages in the absence of danger stimulus which supports its adjuvant potential. Compared to the Al salt as a control Al-CD was more potent even with ‰ 20 Al concentration on the inflammatory activity of the macropahges in vitro.

Keywords

Carbon nanodots Aluminum doped nanomaterials Inflammation Macrophage Adjuvants 

Abbreviations

CD

Carbon nanodot

Al

Aluminum

TNF-α

Tumor nacrosis factor-α

IL-6

Interleukin 6

IL1β

Interleukin 1β

RAW 264.7

Mouse macrophage cell line

ELISA

Enzyme linked immunosorbent assay

LPS

Lipopolysachharide

Notes

Acknowledgements

This study was supported by 2017-2-AP-4-2506 BAP Project of Mersin University. Our group greatly appreciates the material support of Prof. Dr. Juan Anguita from CICBiogune.

Funding

This study was supported by 2017-2-AP-4-2506 BAP Project of Mersin University.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial and non-financial interest.

Ethical approval

No ethical consent was required for this type of study.

References

  1. 1.
    Broide DH (2009) Immunomodulation of allergic disease. Annu Rev Med 60:279–291.  https://doi.org/10.1146/annurev.med.60.041807.123524 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Saroja C, Lakshmi P, Bhaskaran S (2011) Recent trends in vaccine delivery systems: a review. Int J Pharm Investig 1:64–74.  https://doi.org/10.4103/2230-973X.82384 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Awate S, Babiuk LA, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4:114.  https://doi.org/10.3389/fimmu.2013.00114 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alving CR, Peachman KK, Rao M, Reed SG (2012) Adjuvants for human vaccines. Curr Opin Immunol 24:310–315.  https://doi.org/10.1016/j.coi.2012.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ayaz F (2018) Ruthenium pyridyl thiocyanate complex increased the production of pro-inflammatory TNFα and IL1β cytokines by the LPS stimulated mammalian macrophages in vitro. Mol Biol Rep.  https://doi.org/10.1007/s11033-018-4392-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Ayaz F, Yuzer A, Ince M (2018) Immunostimulatory effect of Zinc Phthalocyanine derivatives on macrophages based on the pro-inflammatory TNFalpha and IL1beta cytokine production levels. Toxicol In Vitro 53:172–177.  https://doi.org/10.1016/j.tiv.2018.08.011 CrossRefPubMedGoogle Scholar
  7. 7.
    Navarro-Tovar G, Palestino G, Rosales-Mendoza S (2016) An overview on the role of silica-based materials in vaccine development. Expert Rev Vaccines 15:1449–1462.  https://doi.org/10.1080/14760584.2016.1188009 CrossRefPubMedGoogle Scholar
  8. 8.
    Nagesetti A, McGoron AJ (2016) Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging. Coll Surf B 147:492–500.  https://doi.org/10.1016/j.colsurfb.2016.07.048 CrossRefGoogle Scholar
  9. 9.
    Liu H, Wang Q, Shen G et al (2014) A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy. Nanoscale Res Lett 9:397.  https://doi.org/10.1186/1556-276X-9-397 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jung YK, Shin E, Kim B-S (2015) Cell nucleus-targeting zwitterionic carbon dots. Sci Rep 5:18807.  https://doi.org/10.1038/srep18807 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mukherjee P, Misra SK, Gryka MC et al (2015) Tunable luminescent carbon nanospheres with well-defined nanoscale chemistry for synchronized imaging and therapy. Small 11:4691–4703.  https://doi.org/10.1002/smll.201500728 CrossRefPubMedGoogle Scholar
  12. 12.
    Du F, Zhang M, Li X et al (2014) Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology.  https://doi.org/10.1088/0957-4484/25/31/315702 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang J, Peng F, Lu Y et al (2015) Large-scale green synthesis of fluorescent carbon nanodots and their use in optics applications. Adv Opt Mater 3:103–111.  https://doi.org/10.1002/adom.201400307 CrossRefGoogle Scholar
  14. 14.
    Park SY, Lee HU, Park ES et al (2014) Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces 6:3365–3370.  https://doi.org/10.1021/am500159p CrossRefPubMedGoogle Scholar
  15. 15.
    Suvarnaphaet P, Tiwary CS, Wetcharungsri J et al (2016) Blue photoluminescent carbon nanodots from limeade. Mater Sci Eng C 69:914–921.  https://doi.org/10.1016/j.msec.2016.07.075 CrossRefGoogle Scholar
  16. 16.
    Dong Y, Wan L, Cai J et al (2015) Natural carbon-based dots from humic substances. Sci Rep 5:10037.  https://doi.org/10.1038/srep10037 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li C-L, Ou C-M, Huang C-C et al (2014) Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B 2:4564–4571.  https://doi.org/10.1039/C4TB00216D CrossRefGoogle Scholar
  18. 18.
    Pal T, Mohiyuddin S, Packirisamy G (2018) Facile and green synthesis of multicolor fluorescence carbon dots from curcumin: in vitro and in vivo bioimaging and other applications. ACS Omega 3:831–843.  https://doi.org/10.1021/acsomega.7b01323 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140:4260–4269.  https://doi.org/10.1039/C5AN00454C CrossRefPubMedGoogle Scholar
  20. 20.
    Niu X, Liu G, Li L et al (2015) Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications. RSC Adv 5:95223–95229.  https://doi.org/10.1039/C5RA17439B CrossRefGoogle Scholar
  21. 21.
    Wang C, Sun D, Zhuo K et al (2015) Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application Chunfeng. RSC Adv 4(96):54060–54065.  https://doi.org/10.1039/C4RA10885J CrossRefGoogle Scholar
  22. 22.
    Wang L, Yang R, Yuan B et al (2015) The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 5:310–315.  https://doi.org/10.1016/j.apsb.2015.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Karaaslan İ, Dalgıç AC (2012) Spray drying of liquorice (Glycyrrhiza glabra) extract. J Food Sci Technol 51:3014–3025.  https://doi.org/10.1007/s13197-012-0847-0 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Alas MO, Genc R (2017) An investigation into the role of macromolecules of different polarity as passivating agent on the physical, chemical and structural properties of fluorescent carbon nanodots. J Nanoparticle Res 19(185):1–15.  https://doi.org/10.1007/s11051-017-3863-1 CrossRefGoogle Scholar
  25. 25.
    Sajid PA, Shashank Chetty S, Praneetha S et al (2016) One-pot microwave-assisted: In situ reduction of Ag+ and Au3+ ions by Citrus limon extract and their carbon-dots based nanohybrids: A potential nano-bioprobe for cancer cellular imaging. RSC Adv 6:103482–103490.  https://doi.org/10.1039/c6ra24033j CrossRefGoogle Scholar
  26. 26.
    Zhu PP, Cheng Z, Du LL et al (2018) Synthesis of the Cu-doped dual-emission fluorescent carbon dots and its analytical application. Langmuir 34:9982–9989.  https://doi.org/10.1021/acs.langmuir.8b01230 CrossRefPubMedGoogle Scholar
  27. 27.
    Rub Pakkath SA, Chetty SS, Selvarasu P et al (2018) Transition metal ion (Mn2+, Fe2+, Co2+, and Ni2+)-doped carbon dots synthesized via microwave-assisted pyrolysis: a potential nanoprobe for magneto-fluorescent dual-modality bioimaging. ACS Biomater Sci Eng 4:2581–2596.  https://doi.org/10.1021/acsbiomaterials.7b00943 CrossRefGoogle Scholar
  28. 28.
    Cheng J, Wang C-F, Zhang Y et al (2016) Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Adv 6:37189–37194.  https://doi.org/10.1039/C5RA27808B CrossRefGoogle Scholar
  29. 29.
    Bao YW, Hua XW, Chen X, Wu FG (2018) Platinum-doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: Multi-organelle-targeted photothermal therapy. Biomaterials 183:30–42.  https://doi.org/10.1016/j.biomaterials.2018.08.031 CrossRefPubMedGoogle Scholar
  30. 30.
    Alanka S, Ratnam C, Prasad BS (2018) An effective approach to synthesize carbon nanotube-reinforced Al matrix composite precursor. IEEE J Sel Top Quantum Electron 25:983–991.  https://doi.org/10.1515/secm-2017-0229 CrossRefGoogle Scholar
  31. 31.
    Khan M, Amjad M, Khan A et al (2017) Microstructural evolution, mechanical profile, and fracture morphology of aluminum matrix composites containing graphene nanoplatelets. J Mater Res 32:2055–2066.  https://doi.org/10.1557/jmr.2017.111 CrossRefGoogle Scholar
  32. 32.
    Mansoor M, Shahid M (2016) Carbon nanotube-reinforced aluminum composite produced by induction melting. J Appl Res Technol 14:215–224.  https://doi.org/10.1016/j.jart.2016.05.002 CrossRefGoogle Scholar
  33. 33.
    Bartolucci SF, Paras J, Rafiee MA et al (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937.  https://doi.org/10.1016/J.MSEA.2011.07.043 CrossRefGoogle Scholar
  34. 34.
    Iwalewa E, McGaw L, Naidoo V, Eloff J (2007) Inflammation: the foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions. African J Biotechnol 6:2868–2885.  https://doi.org/10.5897/AJB2007.000-2457 CrossRefGoogle Scholar
  35. 35.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899.  https://doi.org/10.1016/j.cell.2010.01.025 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rakoff-Nahoum S (2006) Why cancer and inflammation? Yale J Biol Med 79:123–130PubMedGoogle Scholar
  37. 37.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867.  https://doi.org/10.1038/nature01322 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hancock REW, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10:243–254.  https://doi.org/10.1038/nrmicro2745 CrossRefPubMedGoogle Scholar
  39. 39.
    Kaufmann T, Simon HU (2015) Targeting disease by immunomodulation. Cell Death Differ 22:185–186.  https://doi.org/10.1038/cdd.2014.166 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Julier Z, Park AJ, Briquez PS, Martino MM (2017) Promoting tissue regeneration by modulating the immune system. Acta Biomater 53:13–28.  https://doi.org/10.1016/j.actbio.2017.01.056 CrossRefPubMedGoogle Scholar
  41. 41.
    Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–290.  https://doi.org/10.1038/nrclinonc.2016.25 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tan T-T, Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19:209–216.  https://doi.org/10.1016/j.coi.2007.01.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10.  https://doi.org/10.1016/j.immuni.2013.07.012 CrossRefPubMedGoogle Scholar
  44. 44.
    Guevara-Patino JA, Turk MJ, Wolchok JD, Houghton AN (2003) Immunity to cancer through immune recognition of altered self: studies with melanoma. Adv Cancer Res 90:157–177CrossRefPubMedGoogle Scholar
  45. 45.
    Valdes-Ramos R, Benitez-Arciniega AD (2007) Nutrition and immunity in cancer. Br J Nutr 98(Suppl 1):S127–S132.  https://doi.org/10.1017/S0007114507833009 CrossRefPubMedGoogle Scholar
  46. 46.
    Scull CM, Hays WD, Fischer TH (2010) Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J Inflamm (Lond) 7:53.  https://doi.org/10.1186/1476-9255-7-53 CrossRefGoogle Scholar
  47. 47.
    Kawagishi C, Kurosaka K, Watanabe N, Kobayashi Y (2001) Cytokine production by macrophages in association with phagocytosis of etoposide-treated P388 cells in vitro and in vivo. Biochim Biophys Acta 1541:221–230CrossRefPubMedGoogle Scholar
  48. 48.
    Murray RZ, Stow JL (2014) Cytokine Secretion in Macrophages: SNAREs, Rabs, and Membrane Trafficking. Front Immunol 5:538.  https://doi.org/10.3389/fimmu.2014.00538 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491.  https://doi.org/10.3389/fimmu.2014.00491 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schmitz F, Mages J, Heit A et al (2004) Transcriptional activation induced in macrophages by Toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling. Eur J Immunol 34:2863–2873.  https://doi.org/10.1002/eji.200425228 CrossRefPubMedGoogle Scholar
  51. 51.
    Cavaillon JM (1994) Cytokines and macrophages. Biomed Pharmacother 48:445–453CrossRefPubMedGoogle Scholar
  52. 52.
    Soromou LW, Zhang Z, Li R et al (2012) Regulation of inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 murine macrophage by 7-O-methyl-naringenin. Molecules 17:3574–3585.  https://doi.org/10.3390/molecules17033574 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Berghaus LJ, Moore JN, Hurley DJ et al (2010) Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4. Comp Immunol Microbiol Infect Dis 33:443–454.  https://doi.org/10.1016/j.cimid.2009.07.001 CrossRefPubMedGoogle Scholar
  54. 54.
    Yang Y, Inatsuka C, Gad E et al (2014) Protein-bound polysaccharide-K induces IL-1β via TLR2 and NLRP3 inflammasome activation. Innate Immun 20:857–866.  https://doi.org/10.1177/1753425913513814 CrossRefPubMedGoogle Scholar
  55. 55.
    Lopez-Castejon G, Brough D (2011) Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev 22:189–195.  https://doi.org/10.1016/j.cytogfr.2011.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gasparini C, Foxwell BM, Feldmann M (2013) RelB/p50 regulates TNF production in LPS-stimulated dendritic cells and macrophages. Cytokine 61:736–740.  https://doi.org/10.1016/j.cyto.2012.12.029 CrossRefPubMedGoogle Scholar
  57. 57.
    Parameswaran N, Patial S (2010) Tumor necrosis factor-alpha signaling in macrophages. Crit Rev Eukaryot Gene Expr 20:87–103CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Brugnano JL, Chan BK, Seal BL, Panitch A (2011) Cell-penetrating peptides can confer biological function: Regulation of inflammatory cytokines in human monocytes by MK2 inhibitor peptides. J Control Release 155:128–133.  https://doi.org/10.1016/j.jconrel.2011.05.007 CrossRefPubMedGoogle Scholar
  59. 59.
    Genc R, Alas MO, Harputlu E et al (2017) High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci Rep 7:11222.  https://doi.org/10.1038/s41598-017-11347-1 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Çalhan SD, Alaş M, Aşık M et al (2018) One-pot synthesis of hydrophilic and hydrophobic fluorescent carbon dots using deep eutectic solvents as designer reaction media. J Mater Sci 53:15362–15375.  https://doi.org/10.1007/s10853-018-2723-4 CrossRefGoogle Scholar
  61. 61.
    Xu M, He G, Li Z et al (2014) A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 6:10307–10315.  https://doi.org/10.1039/C4NR02792B CrossRefPubMedGoogle Scholar
  62. 62.
    Wei J, Liu B, Yin P (2014) Dual functional carbonaceous nanodots exist in a cup of tea. RSC Adv 4:63414–63419.  https://doi.org/10.1039/c4ra11152d CrossRefGoogle Scholar
  63. 63.
    Lai L, Barnard AS (2011) Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds. Nanoscale 3:2566–2575CrossRefPubMedGoogle Scholar
  64. 64.
    Wu G, Feng M, Zhan H (2015) Generation of nitrogen-doped photoluminescent carbonaceous nanodots via the hydrothermal treatment of fish scales for the detection of hypochlorite. RSC Adv 5:44636–44641.  https://doi.org/10.1039/C5RA04989J CrossRefGoogle Scholar
  65. 65.
    Park H-Y, Singh KP, Yang D-S, Yu J-S (2015) Simple approach to advanced binder-free nitrogen-doped graphene electrode for lithium batteries. RSC Adv 5:3881–3887.  https://doi.org/10.1039/C4RA15541F CrossRefGoogle Scholar
  66. 66.
    Le Bozec N, Persson D, Nazarov A, Thierry D (2002) Investigation of filiform corrosion on coated aluminum alloys by FTIR microspectroscopy and scanning kelvin probe. J Electrochem Soc 149:B403–B408.  https://doi.org/10.1149/1.1497172 CrossRefGoogle Scholar
  67. 67.
    Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293.  https://doi.org/10.1038/nri2510 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Online VA (2014) Carbon dots prepared from ginger exhibiting e ffi cient inhibition of human hepatocellular. 4564–4571.  https://doi.org/10.1039/c4tb00216d
  69. 69.
    Nilsen A, Hagemann R, Eide I (1997) The adjuvant activity of diesel exhaust particles and carbon black on systemic IgE production to ovalbumin in mice after intranasal instillation. Toxicology 124:225–232.  https://doi.org/10.1016/S0300-483X(97)00150-9 CrossRefPubMedGoogle Scholar
  70. 70.
    Zhu M, Wang R, Nie G (2014) Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother 10:2761–2774.  https://doi.org/10.4161/hv.29589 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, Faculty of Arts and ScienceMersin UniversityMersinTurkey
  2. 2.Department of Chemical Engineering, Faculty of EngineeringMersin UniversityMersinTurkey

Personalised recommendations