Advertisement

Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L.

  • Ranjeet Kaur
  • Kshitija Sinha
  • Rupam Kumar BhuniaEmail author
Review

Abstract

Wheat is an important cereal crop that fulfils the calorie demands of the global humanity. Rapidly expanding populations are exposed to a fast approaching acute shortage in the adequate supply of food and fibre from agricultural resources. One of the significant threats to food security lies in the constantly increasing global temperatures which inflict serious injuries to the plants in terms of various physiological, biochemical and molecular processes. Wheat being a cool season crop is majorly impacted by the heat stress which adversely affects crop productivity and yield. These challenges would be potentially defeated with the implementation of genetic engineering strategies coupled with the new genome editing approaches. Development of transgenic plants for various crops has proved very effective for the incorporation of improved varietal traits in context of heat stress. With a similar approach, we need to target for the generation of heat stress tolerant wheat varieties which are capable of survival in such adverse conditions and yet produce well. In this review, we enumerate the current status of research on the heat stress responsive genes/factors and their potential role in mitigating heat stress in plants particularly in wheat with an aim to help the researchers get a holistic view of this topic. Also, we discuss on the prospective signalling pathway that is triggered in plants in general under heat stress.

Keywords

Heat stress tolerance (HST) Wheat Heat shock protein (HSP) Signalling pathway MicroRNA Genome editing 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate change and crop production. CABI, Oxfordshire, pp 115–138CrossRefGoogle Scholar
  2. 2.
    FAOSTAT (2018) Organisation Des Nations Unies Pour L’alimentationEtL’agriculture. http://faostat.fao.org
  3. 3.
    Tricker PJ, Elhabti A, Schmidt J, Fleury D (2018) The physiological and genetic basis of combined drought and heat tolerance in wheat. J Exp Bot 69:3195–3210CrossRefPubMedGoogle Scholar
  4. 4.
    Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, DeSanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Müller C, Kumar SN, Nendel C, O’leary G, Olesen JE, Palosuo T, Priesack E, Rezaei EE, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu Y (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147CrossRefGoogle Scholar
  5. 5.
    Tamas C, Kisgyorgy BN, Rakszegi M, Wilkinson MD, Yang MS, Lang L, Tamas L, Bedo Z (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28:1085–1094CrossRefPubMedGoogle Scholar
  6. 6.
    Akter N, Islam MR (2017) Heat stress effects and management in wheat: a review. Agron Sustain Dev 37:37CrossRefGoogle Scholar
  7. 7.
    Ni Z, Li H, Zhao Y, Peng H, Hu Z, Xin M, Sun Q (2018) Genetic improvement of heat tolerance in wheat: recent progress in understanding the underlying molecular mechanisms. Crop J 6:32–41CrossRefGoogle Scholar
  8. 8.
    Parent B, Bonneau J, Maphosa L, Kovalchuk A, Langridge P, Fleury D (2017) Quantifying wheat sensitivities to environmental constraints to dissect genotype × environment interactions in the field. Plant Physiol 174:1669–1682CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang X, Hou L, Lu Y, Wu B, Gong X, Liu M, Wang J, Sun Q, Vierling E, Xu S (2018) Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J Exp Bot 69:5531–5545PubMedPubMedCentralGoogle Scholar
  10. 10.
    Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125CrossRefPubMedGoogle Scholar
  11. 11.
    Usman MG, Rafii MY, Ismail MR, Malek MA, Latif MA, Oladosu Y (2014) Heat shock proteins: functions and response against heat stress in plants. Int J SciTechnol Res 3:204–218Google Scholar
  12. 12.
    Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252CrossRefPubMedGoogle Scholar
  13. 13.
    Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by overexpression of hsp101. Plant MolBiol 51:677–686Google Scholar
  14. 14.
    Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2010) Overexpression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biol Plant 54:105–111CrossRefGoogle Scholar
  15. 15.
    Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang EW, Jiang L, Wu K, Huang S (2012) NnHSP175, a cytosolic class II small heat shock protein gene from Nelumbonucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep 31:379–389CrossRefPubMedGoogle Scholar
  16. 16.
    Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931CrossRefPubMedGoogle Scholar
  17. 17.
    Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X (2012) ZmHSP169, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484CrossRefPubMedGoogle Scholar
  18. 18.
    Fu J, Momčilović I, Clemente TE, Nersesian N, Trick HN, Ristic Z (2008) Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticumaestivum) following heat stress. Plant Mol Biol 68:277–288CrossRefPubMedGoogle Scholar
  19. 19.
    Fu J, Ristic Z (2010) Analysis of transgenic wheat (Triticumaestivum L) harboring a maize (Zea mays L) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene. Plant Mol Biol 73:339–347CrossRefPubMedGoogle Scholar
  20. 20.
    Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205–206:38–47CrossRefPubMedGoogle Scholar
  21. 21.
    Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance—role of glycine betaine. Curr Genomics 14:157–165CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase AM, Takabe T, Takabe T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ 23:107–114CrossRefGoogle Scholar
  23. 23.
    Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang QB, Xu W, Xue QZ, Su WA (2010) Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ Sci B 11:851–861CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang GP, Zhang XY, Li F, Luo Y, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48:117–126CrossRefGoogle Scholar
  27. 27.
    Miranda JA, Avonce N, Suárez R, Thevelein JM, VanDijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic stress conditions in transgenic Arabidopsis. Planta 226:1411–1421CrossRefPubMedGoogle Scholar
  28. 28.
    Suárez R, Calderón C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49:1791–1799CrossRefGoogle Scholar
  29. 29.
    Mittal D, Madhyastha DA, Grover A (2012) Gene expression analysis in response to low and high temperature and oxidative stresses in rice: combination of stresses evokes different transcriptional changes as against stresses applied individually. Plant Sci 197:102–113CrossRefPubMedGoogle Scholar
  30. 30.
    Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273:23–27CrossRefPubMedGoogle Scholar
  31. 31.
    Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman MB (2004) Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by bax and oxidative stresses in yeast and plants. Plant Physiol 135:1630–1641CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the Cu/Zn SOD, APX and NDPK2 genes. Physiol Plant 140:153–162CrossRefPubMedGoogle Scholar
  33. 33.
    Sundaram S, Rathinasabapathi B (2010) Transgenic expression of fern Pteris vittata glutaredoxin PvGrx5 in Arabidopsis thaliana increases plant tolerance to high temperature stress and reduces oxidative damage to proteins. Planta 231:361–369CrossRefPubMedGoogle Scholar
  34. 34.
    Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434PubMedGoogle Scholar
  35. 35.
    Goraya GK, Asthir B (2016) Magnificant role of intracellular reactive oxygen species production and its scavenging encompasses downstream processes. J Plant Biol 59:215–222CrossRefGoogle Scholar
  36. 36.
    Wang L, Guo Y, Jia L, Chu H, Zhou S, Chen K, Wu D, Zhao L (2014) Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. Plant Physiol 164:2184–2196CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bhunia RK, Chakraborty A, Kaur R, Gayatri T, Bhattacharyya J, Basu A, Maiti MK, Sen SK (2014) Seed specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Mol Biol 86:351–365CrossRefPubMedGoogle Scholar
  38. 38.
    Bhunia RK, Chakraborty A, Kaur R, Maiti MK, Sen SK (2016) Enhancement of α-linolenic acid content in transgenic tobacco seeds by targeting a plastidial ω-3 fatty acid desaturase (fad7) gene of Sesamumindicum to ER. Plant Cell Rep 35:213–226CrossRefPubMedGoogle Scholar
  39. 39.
    Murakami Y, Tsuyama M, Kobayaschi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance to high temperature. Science 287:476–479CrossRefPubMedGoogle Scholar
  40. 40.
    Hiremath, SS, Sajeevan R.S, Nataraja KN, Chaturvedi AK, Chinnusamy V, Pal M (2017) Silencing of fatty acid desaturase (FAD7) gene enhances membrane stability and photosynthetic efficiency under heat stress in tobacco (Nicotiana benthamiana). Indian J Exp Biol 55:532–541Google Scholar
  41. 41.
    Sohn SO, Back K (2007) Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol Plant 51:340–342CrossRefGoogle Scholar
  42. 42.
    Liu XY, Yang JH, Li B, Yang XM, Meng QW (2006) Antisense-mediated depletion of tomato chloroplast omega-3 fatty acid desaturase enhances thermal tolerance. J Integr Plant Biol 48:1096–1107CrossRefGoogle Scholar
  43. 43.
    Horiguchi G, Kawakami N, Kusumi K, Kodama H, Iba K (1998) Developmental regulation of genes for microsome and plastid ω-3 fatty acid desaturases in wheat (Triticum aestivum L.). Plant Cell Physiol 39:540–544CrossRefGoogle Scholar
  44. 44.
    Bhunia RK, Showman LJ, Jose A, Nikolau BJ (2018) Combined use of cutinase and high-resolution mass-spectrometry to query the molecular architecture of cutin. Plant Methods 14:117CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mohammed S, Huggins TD, Beecher F, Chick C, Sengodon P, Mondal, Hays DB (2018) The role of leaf epicuticular wax in the adaptation of wheat (Triticum aestivum L.) to high temperatures and moisture deficit conditions. Crop Sci 58:1–11CrossRefGoogle Scholar
  46. 46.
    Mondal S, Mason RE, Huggins T, Hays DB (2015) QTL on wheat (Triticum aestivum L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures under heat stress. Euphytica 201:123–130CrossRefGoogle Scholar
  47. 47.
    Wang Y, Wang M, Sun Y, Wang Y, Li T, Chai G, Jiang W, Shan L, Li C, Xiao E, Wang Z (2015) FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.). J Exp Bot 66:1165–1178CrossRefPubMedGoogle Scholar
  48. 48.
    Narayanan S, Tamura PJ, Roth MR, Prasad PV, Welti R (2016) Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ 39:787–803CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K (2015) Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci Rep 5:1–7CrossRefGoogle Scholar
  50. 50.
    Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:1–13PubMedPubMedCentralGoogle Scholar
  51. 51.
    Xin H, Zhang H, Chen L, Li X, Lian Q, Yuan X, Hu X, Cao L, He X, Yi M (2010) Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep 29:875–885CrossRefPubMedGoogle Scholar
  52. 52.
    Kataoka R, Takahashi M, Suzuki N (2017) Coordination between bZIP28 and Hsfa2 in the regulation of heat response signals in Arabidopsis. Plant Signal Behav 12:1–6CrossRefGoogle Scholar
  53. 53.
    Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Gen 286:321–332CrossRefGoogle Scholar
  54. 54.
    Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS, Lee KO, Chung WS, Lee SY, Lim CO (2007) Overexpression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. BiochemBiophys Res Commun 362:431–436CrossRefGoogle Scholar
  55. 55.
    Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO (2010) Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. BiochemBiophys Res Commun 401:238–244CrossRefGoogle Scholar
  56. 56.
    Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ, Wang X, Qiu AL, Zhang TX, Lin J, Chen YS, Guan DY, Cai HY, Mou SL, He SL (2012) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ 36:757–774CrossRefPubMedGoogle Scholar
  57. 57.
    He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:1–16CrossRefGoogle Scholar
  58. 58.
    Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011) Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 66:844–851CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Qin D, Wang F, Geng X, Zhang L, Yao Y, Ni Z, Peng H, Sun Q (2015) Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) multiprotein bridging factor, confers heat tolerance in both yeast and rice. Plant MolBiol 87:31–45Google Scholar
  60. 60.
    Agarwal P, Khurana P (2018) Characterization of a novel zinc finger transcription factor (TaZnF) from wheat conferring heat stress tolerance in Arabidopsis. Cell Stress Chaperon 23:253–267CrossRefGoogle Scholar
  61. 61.
    Gao H, Brandizzi F, Benning C, Larkin RM (2008) A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:16398–16403CrossRefPubMedGoogle Scholar
  62. 62.
    Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65CrossRefPubMedGoogle Scholar
  63. 63.
    Gao F, Han X, Wu J, Zheng S, Shang Z, Sun D, Zhou R, Li B (2012) A heat-activated calcium-permeable channel-Arabidopsis cyclic nucleotide-gated ion channel 6-is involved in heat shock responses. Plant J 70:1056–1069CrossRefPubMedGoogle Scholar
  64. 64.
    Guo J, Islam MA, Lin H, Ji C, Duan Y, Liu P (2018) Genome-wide identification of cyclic nucleotide-gated ion channel gene family in wheat and functional analyses of TaCNGC14 and TaCNGC16. Front Plant Sci 9:18CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Finka A, Quendet AFH, Maathuis FJ, Saidi Y, Goloubinoff P (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24:3333–3348CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci 97:9323–9328CrossRefPubMedGoogle Scholar
  68. 68.
    Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601CrossRefPubMedGoogle Scholar
  69. 69.
    Wu HC, Luo DL, Vignols F, Jinn TL (2012) Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ 35:1543–1557CrossRefPubMedGoogle Scholar
  70. 70.
    Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat shock signal transduction in Arabidopsis thaliana. Plant J 5:760–773CrossRefGoogle Scholar
  71. 71.
    Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153:1895–1906CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Clarke SM, Cristescu SM, Miersch O, Harren FJ, Wasternack C, Mur LA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187CrossRefPubMedGoogle Scholar
  73. 73.
    Carranco R, Espinosa JM, Prieto-Dapena P, Almoguera C, Jordano J (2010) Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity. Proc Natl Acad Sci 107:21908–21913CrossRefPubMedGoogle Scholar
  74. 74.
    Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor Hsfa6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172:1182–1199PubMedPubMedCentralGoogle Scholar
  75. 75.
    Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851CrossRefPubMedGoogle Scholar
  76. 76.
    Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kumar RR, Pathak H, Sharma SK, Kala YK, Nirjal MK, Singh GP, Goswami S, Rai RD (2015) Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L). Funct Integr Genomics 15:323–348CrossRefPubMedGoogle Scholar
  78. 78.
    Goswami S, Kumar RR, Sharma SK, Kala YK, Singh K, Gupta R, Dhavan G, Rai GK, Singh GP, Pathak H, Rai RD (2014) Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of developing wheat (Triticum aestivum) grain under the heat stress. J Plant Biochem Biotechnol 24:441–452CrossRefGoogle Scholar
  79. 79.
    Song G, Zhang R, Zhang S, Li Y, Gao J, Han X, Chen M, Wang J, Li W, Li G (2017) Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genom 18:212CrossRefGoogle Scholar
  80. 80.
    Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA guided genome editing for target gene mutations in wheat. G3 3:2233–2238CrossRefPubMedGoogle Scholar
  81. 81.
    Kaur R, Bhunia RK, Ghosh AK (2016) Molecular genetic approaches for environmental stress tolerant crop plants: progress and prospects. Recent Pat Biotechnol 10:12–29CrossRefPubMedGoogle Scholar
  82. 82.
    Gao J, Lan T (2016) Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 6:19467CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 40:1000–1003CrossRefPubMedGoogle Scholar
  84. 84.
    Kovacs D, Agoston B, Tompa P (2008) Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav 3:710–713CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Abhinandan K, Skori L, Stanic M, Hickerson N, Jamshed M, Samuel MA (2018) Abiotic stress signaling in wheat—an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front Plant Sci 9:734CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Li A, Wang X, Leseberg CH, Jia J, Mao L (2008) Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav 3:654–656CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horváth B, Domoki M, Darula Z, Medzihradszky K (2014) The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol 165:319–334CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Bigeard J, Hirt H (2018) Nuclear signaling of plant MAPKs. Front Plant Sci 9:469CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhan H, Yue H, Zhao X, Wang M, Song W, Nie X (2017) Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes 8–284Google Scholar
  90. 90.
    Tian S, Mao X, Zhang H, Chen S, Zhai C, Yang S, Jing R (2013) Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot 64:2063–2080CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, Ronen G, Sharpe AG, Pozniak C, Barad O, Baruch K, Keeble-Gagnère G, Mascher M, Ben-Zvi G, Josselin A-A, Himmelbach A, Balfourier F, Gutierrez-Gonzalez J, Hayden M, Koh C, Muehlbauer G, Pasam RK, Paux E, Rigault P, Tibbits J, Tiwari V, Spannagl M, Lang D, Gundlach H, Haberer G, Mayer KFX, Ormanbekova D, Prade V, Šimková H, Wicker T, Swarbreck D, Rimbert H, Felder M, Guilhot N, Kaithakottil G, Keilwagen J, Leroy P, Lux T, Twardziok S, Venturini L, Juhász A, Abrouk M, Fischer I, Uauy C, Borrill P, Ramirez-Gonzalez RH, Arnaud D, Chalabi S, Chalhoub B, Cory A, Datla R, Davey MW, Jacobs J, Robinson SJ, Steuernagel B, van Ex F, Wulff BBH, Benhamed M, Bendahmane A, Concia L, Latrasse D, Alaux M, Bartoš J, Bellec A, Berges H, Doležel J, Frenkel Z, Gill B, Korol A, Letellier T, Olsen O-A, Singh K, Valárik M, van der Vossen E, Vautrin S, Weining S, Fahima T, Glikson V, Raats D, Číhalíková J, Toegelová H, Vrána J, Sourdille P, Darrier B, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Jones JDG, Witek K, Yu G, Small I, Melonek J, Zhou R, Belova T, Kanyuka K, King R, Nilsen K, Walkowiak S, Cuthbert R, Knox R, Wiebe K, Xiang D, Rohde A, Golds T, Čížková J, Akpinar BA, Biyiklioglu S, Gao L, N’Daiye A, Kubaláková M, Šafář J, Alfama F, Adam-Blondon A-F, Flores R, Guerche C, Loaec M, Quesneville H, Condie J, Ens J, Maclachlan R, Tan Y, Alberti A, Aury J-M, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P, Kaur G, Luo M, Sehgal S, Chhuneja P, Gupta OP, Jindal S, Kaur P, Malik P, Sharma P, Yadav B, Singh NK, Khurana J, Chaudhary C, Khurana P, Kumar V, Mahato A, Mathur S, Sevanthi A, Sharma N, Tomar RS, Holušová K, Plíhal O, Clark MD, Heavens D, Kettleborough G, Wright J, Balcárková B, Hu Y, Salina E, Ravin N, Skryabin K, Beletsky A, Kadnikov V, Mardanov A, Nesterov M, Rakitin A, Sergeeva E, Handa H, Kanamori H, Katagiri S, Kobayashi F, Nasuda S, Tanaka T, Wu J, Cattonaro F, Jiumeng M, Kugler K, Pfeifer M, Sandve S, Xun X, Zhan B, Batley J, Bayer PE, Edwards D, Hayashi S, Tulpová Z, Visendi P, Cui L, Du X, Feng K, Nie X, Tong W, Wang L (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):7191CrossRefGoogle Scholar
  92. 92.
    Kaur R, Chakraborty A, Bhunia RK, Sen SK, Ghosh AK (2018) Tolerance to soil water stress by Oryza sativa cv. IR20 was improved by expression of Wsi18 gene locus from Oryza nivara. Biol Plant 62:129–139CrossRefGoogle Scholar
  93. 93.
    Egan PA, Muola A, Stenberg JA (2018) Capturing genetic variation in crop wild relatives: an evolutionary approach. Evol Appl 11:1293–1304CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array. BMC Genom 9:1–19CrossRefGoogle Scholar
  95. 95.
    Zang X, Geng X, Liu K, Fei W, Liu Z, Zhang L, Yue Z, Tian X, Hu Z, Yao Y (2017) Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants. Plant Sci 258:1–11CrossRefPubMedGoogle Scholar
  96. 96.
    Zhang L, Geng X, Zhang H, Zhou C, Zhao A, Wang F, Zhao Y, Tian X, Hu Z, Xin M (2017) Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). J Plant Biol 60:57–65CrossRefGoogle Scholar
  97. 97.
    Hu XJ, Chen D, Mclntyre CL, Dreccer MF, Zhang ZB, Drenth J, Sundaravelpandian K, Chang H, Xue GP (2018) Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ 41:79–98CrossRefPubMedGoogle Scholar
  98. 98.
    Singh A, Khurana P (2016) Molecular and functional characterization of a wheat B2 protein imparting adverse temperature tolerance and influencing plant growth. Front Plant Sci 7:642PubMedPubMedCentralGoogle Scholar
  99. 99.
    Xue GP, Drenth J, Mcintyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66:1025–1039CrossRefPubMedGoogle Scholar
  100. 100.
    Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, Xin M (2017) Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol 17:14CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Guo W, Zhang J, Zhang N, Xin M, Peng H, Hu Z, Ni Z, Du J (2015) The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS ONE 10:e0135667CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Wang F, Zang XS, Kabir MR, Liu KL, Liu ZS, Ni ZF, Yao YY, Hu ZR, Sun QX, Peng HR (2014) A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis. Gene 550:18–26CrossRefPubMedGoogle Scholar
  103. 103.
    Chauhan H, Khurana N, Agarwal P, Khurana JP, Khurana P (2013) A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS ONE 8:e79577CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Zhang S, Xu ZS, Li P, Yang L, Wei Y, Chen M, Li L, Zhang G, Ma Y (2013) Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep 31:688–697CrossRefGoogle Scholar
  105. 105.
    Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE 7:e48445CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Li Q, Wang W, Wang W, Zhang G, Liu Y, Wang Y, Wang W (2018) Wheat F-Box protein gene TaFBA1 is involved in plant tolerance to heat stress. Front Plant Sc 9:521CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyMangalmay Group of InstitutionsGreater NoidaIndia
  2. 2.Plant Tissue Culture and Genetic EngineeringNational Agri-Food Biotechnology Institute (NABI)MohaliIndia

Personalised recommendations