Advertisement

Isoflavones prevent oxidative stress and inhibit the activity of the enzyme monoamine oxidase in vitro

  • Izaviany da Silva Schmitz
  • Larissa Finger Schaffer
  • Alcindo Busanello
  • Catiuscia Molz de Freitas
  • Roselei Fachinetto
  • Luis Ricardo PerozaEmail author
Original Article

Abstract

Oxidative stress occurs due to an imbalance between antioxidant defenses and pro-oxidant agents in brain. This condition has been associated to the pathogenesis of several brain diseases; therefore, increasing the use of compounds that exert antioxidant activity. Thus, the objective of this study was to evaluate, in vitro, the effect of isoflavones in: (1) lipid peroxidation, catalase activity and thiol groups in the presence of pro-oxidants: sodium nitroprusside or Fe2+/EDTA complex in rat brain homogenates; (2) the activity of the enzyme monoamine oxidase (MAO). As a result, the isoflavones reduced lipid peroxidation in a manner dependent on the concentration and protected against the reduction of catalase activity as well as the induced thiol oxidation in brain tissue. In addition, isoflavones inhibited MAO activity (MAO-A and MAO-B). Taken together, our results showed that isoflavones avoided oxidative stress and decreased the MAO activity, suggesting a promissory use in the treatment of neurodegenerative diseases.

Keywords

Oxidative stress Isoflavones Antioxidant Monoamine oxidase 

Notes

Acknowledgements

We acknowledge fellowships from CNPq (R.F.) and CAPES (L.F.S., A.B., C.M.F, L.R.P).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and CAPES/PROEX (23038.005848/2018-31; support number: 0737/2018). Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS/Brazil (2080–2551/13-5-PqG-001/2013) and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq/Brazil (475210/2013-1).

Compliance with ethical standards

Conflict of interest

Authors declare that they do not hold any conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Berg D, Youdim MB, Riederer P (2004) Redox imbalance. Cell Tissue Res 318:201–213CrossRefGoogle Scholar
  2. 2.
    Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650CrossRefGoogle Scholar
  3. 3.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658CrossRefGoogle Scholar
  4. 4.
    Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574CrossRefGoogle Scholar
  5. 5.
    Duffy S, So A, Murphy TH (1998) Activation of endogenous antioxidant defenses in neuronal cells prevents free radical mediated damage. J Neurochem 71:69–78CrossRefGoogle Scholar
  6. 6.
    Silva JP, Coutinho OP (2010) Free radicals in the regulation of damage and cell death—basic mechanisms and prevention. Drug Discov Ther 4:144–167Google Scholar
  7. 7.
    Cohen G (1988) Oxygen radicals and Parkinson’s disease. In: Halliwell B (ed) Oxygen Radicals and Tissue Injury. FASEB, Bethesda, pp 130–135Google Scholar
  8. 8.
    Halliwell B, Gutteridge JMC (1985) Oxygen radicals and the nervous system. Trends Neurosci 8:22–26CrossRefGoogle Scholar
  9. 9.
    Youdim MB, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147:287–296CrossRefGoogle Scholar
  10. 10.
    Sun Y, Chen J, Chen X, Huang L, Li X (2013) Inhibition of cholinesterase and monoamine oxidase-B activity by tacrine–homoisoflavonoid hybrids. Bioorg Med Chem 21:7406–7417CrossRefGoogle Scholar
  11. 11.
    Ou XM, Chen K, Shih JC (2006) Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Natl Acad Sci USA 103:10923–10928CrossRefGoogle Scholar
  12. 12.
    Pereira RP, Fachinetto R, Souza AP, Puntel RL, Santos GNS, Heinzmann BM, Boschetti TK, Athayde ML, Burger ME, Morel AF, Morsch VM, Rocha JB (2008) Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citrates. Neurochem Res 34:973–983CrossRefGoogle Scholar
  13. 13.
    Peroza LR, Busanello A, Leal CQ, Ropke J, Boligon AA, Meinerz D, Libardoni M, Athayde ML, Fachinetto R (2013) Bauhinia forficata prevents vacuous chewing movements induced by haloperidol in rats and has antioxidant potential in vitro. Neurochem Res 38:789–796CrossRefGoogle Scholar
  14. 14.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefGoogle Scholar
  15. 15.
    Cook NC, Samman S (1996) Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76CrossRefGoogle Scholar
  16. 16.
    Levis S, Strickman-Stein N, Ganjei-Azar P, Xu P, Doerge DR, Krischer J (2011) Soy isoflavones in the prevention of menopausal bone loss and menopausal symptoms: a randomized, double-blind trial. Arch Intern Med 171:1363–1369CrossRefGoogle Scholar
  17. 17.
    Morton MS, Arisaka O, Miyake N, Morgan LD, Evans BA (2002) Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. J Nutr 132:3168–3171CrossRefGoogle Scholar
  18. 18.
    Naim M, Gestetner B, Bondi A, Birk Y (1976) Antioxidative and antihemolytic activities of soybean isoflavones. J Agric Food Chem 24:1174–1177CrossRefGoogle Scholar
  19. 19.
    Wei H, Wei L, Frenkel K, Bowen R, Barnes S (1993) Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr Cancer 20:1–12CrossRefGoogle Scholar
  20. 20.
    Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261CrossRefGoogle Scholar
  21. 21.
    Takimoto CH, Glover K, Huang X, Hayes SA, Gallot L, Quinn M, Jovanovic BD, Shapiro A, Hernandez L, Goetz A, Llorens V, Lieberman R, Crowell JA, Poisson BA, Bergan RC (2003) Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomark Prev 12:1213–1221Google Scholar
  22. 22.
    Ohkawa H, Ohishi H, Yagi K (1979) Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  23. 23.
    Aebi H (1984) Catalase in vitro methods enzymol. Academic Press 105:121–126Google Scholar
  24. 24.
    Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  25. 25.
    Reis EM, Schreiner Neto FW, Cattani VB, Peroza LR, Busanello A, Leal CQ, Boligon AA, Lehmen TF, Libardoni M, Athayde ML, Fachinetto R (2014) Antidepressant-like effect of Ilex paraguariensis in rats. Biomed Res.  https://doi.org/10.1155/2014/958209 Google Scholar
  26. 26.
    Soto-Otero R, Méndez-Alvarez E, Hermida-Ameijeiras A, Sánchez-Sellero I, Cruz-Landeira A, Lamas ML (2001) Inhibition of brain monoamine oxidase activity by the generation of hydroxyl radicals: potential implications in relation to oxidative stress. Life Sci 69:879–889CrossRefGoogle Scholar
  27. 27.
    Villarinho JG, Oliveira SM, Silva CR, Cabreira TN, Ferreira J (2012) Involvement of monoamine oxidase B on models of postoperative and neuropathic pain in mice. Eur J Pharmacol 690:107–114CrossRefGoogle Scholar
  28. 28.
    Morinan A, Garratt HM (1985) An improved fluorimetric assay for brain monoamine oxidase. J Pharmachol Methods 13:213–223CrossRefGoogle Scholar
  29. 29.
    Zhao L, Wu TW, Brinton RD (2004) Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 1010:22–34CrossRefGoogle Scholar
  30. 30.
    Sribnick EA, Ray EA, Banik SK (2004) Estrogen as a multi-active neuroprotective agent in traumatic injuries. Neurochem Res 29:2007–2014CrossRefGoogle Scholar
  31. 31.
    Esteves EA, Monteiro JB (2001) Efeitos benéficos das isoflavonas de soja em doenças crônicas. Rev Nutr 14:43–52CrossRefGoogle Scholar
  32. 32.
    Bates JN, Baker MT, Guerra R, Harrison DG (1991) Nitric oxide generation from nitroprusside by vascular tissue. Biochem Pharmacol 42:157–165CrossRefGoogle Scholar
  33. 33.
    Rauhala P, Khaldi A, Mohanakumar KP, Chiueh CC (1998) Apparent role of hydroxyl radicals in oxidative brain injury induced by sodium nitroprusside. Free Radic Biol Med 24:1065–1073CrossRefGoogle Scholar
  34. 34.
    Yen GC, Lai HH (2003) Inhibition of reactive nitrogen species effects in vitro and in vivo by isoflavones and soy-based food extracts. J Agric Food Chem 51:7892–7900CrossRefGoogle Scholar
  35. 35.
    Brown GC (1995) Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 232:188–191CrossRefGoogle Scholar
  36. 36.
    Cooper CE (1999) Nitric oxide and iron proteins. Biochim Biophys Acta 1411:290–309CrossRefGoogle Scholar
  37. 37.
    Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron catalyzed hydroxyl radical formation: stringent requirement for free iron coordination site. J Biol Chem 259:3620–3624Google Scholar
  38. 38.
    Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18CrossRefGoogle Scholar
  39. 39.
    Halliwell B, Gutteridge JMC (1989) Lipid peroxidation: a radical chain reaction. Free Radic Biol Med. 2nd Edition Clarendon Press, OxfordGoogle Scholar
  40. 40.
    Yu BP, Yang R (1996) Critical evaluation of the free radical theory of aging. A proposal for oxidative stress hypothesis. Ann N Y Acad Sci 786:1–11CrossRefGoogle Scholar
  41. 41.
    Bradley-Whitman MA, Lovell MA (2015) Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch Toxicol 89:1035–1044CrossRefGoogle Scholar
  42. 42.
    Ho KP, Li L, Zhao L, Qian ZM (2003) Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol Cell Biochem 247:219–222CrossRefGoogle Scholar
  43. 43.
    Matés JM, Sánchez-Jiménez F (1999) Antioxidant enzymes and their implications on pathophysiologic processes. Front Biosci 4:339–345CrossRefGoogle Scholar
  44. 44.
    Zhang R, Piao MJ, Oh MC, Park JE, Shilnikova K, Moon YK, Kim DH, Hung U, Kim IG, Hyun JW (2016) Protective effect of an isoflavone, tectorigenin, against oxidative stress-induced cell death via catalase activation. J Cancer Prev 21:257–269CrossRefGoogle Scholar
  45. 45.
    Fang Y, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879CrossRefGoogle Scholar
  46. 46.
    Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Int J Biochem Cell Biol 39:44–84CrossRefGoogle Scholar
  47. 47.
    Boadi WY, Thaire L, Kerem D, Yannai S (1991) Effects of dietary factors on antioxidant enzymes in rats exposed to hyperbaric oxygen. Vet Hum Toxicol 33:105–109Google Scholar
  48. 48.
    Mariani E, Polidori MC, Cherubini A et al (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B 827:65–75CrossRefGoogle Scholar
  49. 49.
    Bolasco A, Carradori S, Fioravanti R (2010) Focusing on new monoamine oxidase inhibitors. Expert Opin Ther Pat 20:903–909CrossRefGoogle Scholar
  50. 50.
    Hou WC, Lin RD, Chen C, Lee MH (2005) Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J Ethnopharmacol 100:216–220CrossRefGoogle Scholar
  51. 51.
    Seif-El-Nasr M, Amina SA, Rania MA (2008) Effect of MAO-B inhibition against ischemia-induced oxidative stress in the rat brain. Drug Res 58:160–167Google Scholar
  52. 52.
    Fowler JS, Logan J, Volkow ND, Wang GJ, MacGregor R, Ding Y (2002) Monoamine oxidase: radiotracer development and human studies. Methods 27:263–277CrossRefGoogle Scholar
  53. 53.
    Girgin SF, Sozmen EY, Ersoz B, Mentes G (2004) Link between monoamine oxidase and nitric oxide. Neurotoxicology 25:91–99CrossRefGoogle Scholar
  54. 54.
    Nagatsu T (2004) Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neurotoxicology 25:11–20CrossRefGoogle Scholar
  55. 55.
    Zarmouh NO, Messeha SS, Elshami FM, Soliman KF (2016) Evaluation of the isoflavone genistein as reversible human monoamine oxidase-a and-b inhibitor. Evid Based Complementary Altern Med 2016:1–12CrossRefGoogle Scholar
  56. 56.
    Zarmouh NO, Eyunni S, Soliman KF (2017) The benzopyrone biochanin-A as a reversible, competitive and selective monoamine oxidase B inhibitor. BMC Complement Altern Med 17:34CrossRefGoogle Scholar
  57. 57.
    Kuiper G, Lemmen J, Carlsson BO, Corton JC, Safe S, Van Der Saag P, Gustafsson J (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocr Rev 139:4252–4263CrossRefGoogle Scholar
  58. 58.
    McDonnell DP, Norris JD (2002) Connections and regulation of the human estrogen receptor. Science 296:1642–1644CrossRefGoogle Scholar
  59. 59.
    Bach AWJ, Lan NC, Johnson SL, Abell CW, Bembenek ME, Kwan S-W, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85:4934–4938CrossRefGoogle Scholar
  60. 60.
    Gundlah C, Lu NZ, Bethea CL (2002) Ovarian steroid regulation of monoamine oxidase-A and B mRNAs in the macaque dorsal raphe and hypothalamic nuclei. Psychopharmacology 160:271–282CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Curso de BiomedicinaUniversidade Franciscana (UFN)Santa MariaBrazil
  2. 2.Programa de Pós-Graduação em FarmacologiaUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  3. 3.Programa de Pós-Graduação em Bioquímica ToxicológicaUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  4. 4.Mestrado em Ciências da Saúde e da VidaUniversidade Franciscana (UFN)Santa MariaBrazil

Personalised recommendations