Advertisement

Molecular Biology Reports

, Volume 46, Issue 2, pp 2561–2566 | Cite as

Complete mitochondrial genome of Indian mithun, Bos frontalis and its phylogenetic implications

  • Vandana R. Prabhu
  • Moolamkudy Suresh Arjun
  • Karippadakam Bhavana
  • Ranganathan Kamalakkannan
  • Muniyandi NagarajanEmail author
Short Communication
  • 160 Downloads

Abstract

Mithun (Bos frontalis) is an endangered domestic bovine species native to the hilly areas of China, Bangladesh, Myanmar, Bhutan and India. It is believed to have been domesticated from gaur around 8000 years ago. However, a few studies suggest that mithun is either an independent species or a hybrid descendant of gaur and cattle. Therefore, to understand the evolutionary history of mithun, the complete mitochondrial genome of Indian mithun was sequenced and compared with the mitochondrial genome of closely related Bos species. The mitochondrial genome of mithun was 16,346 bp long and consisted of 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes, and a control region. The phylogenetic assessments of Indian mithun along with other Bos species showed a very close genetic relationship of Indian mithun with gaur suggesting that Indian mithun might have evolved from gaur.

Keywords

Mithun Gayal Gaur Mitochondrial DNA Domestication 

Notes

Acknowledgements

We are grateful to the Science and Engineering Research Board (SERB), Department of Science and technology, Government of India, New Delhi for financial Assistance (EMR/2015/000937). The first author is grateful to the DST-INSPIRE (IF160266) for the support in the form of research fellowship.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Ethical approval

The study was performed in compliance with ethical standards of international and national guidelines for the care and use of animals. This study does not require Ethical approval as the tissue samples used were collected from the dead specimens at slaughterhouses.

References

  1. 1.
    Baig M, Mitra B, Qu K, Peng MS, Ahmed I, Miao YW, Zan LS, Zhang YP (2013) Mitochondrial DNA diversity and origin of Bos frontalis. Curr Sci 104:115–120Google Scholar
  2. 2.
    Tenzin S, Dorji J, Dorji T, Kawamoto Y (2016) Assessment of genetic diversity of Mithun (Bos frontalis) population in Bhutan using microsatellite DNA markers. Anim Genet Resour 59:1–6CrossRefGoogle Scholar
  3. 3.
    Mukherjee A, Mukherjee S, Dhakal R, Mech M, Longkumer I, Haque N, Vupru K, Khate K, Jamir IY, Pongen P, Rajkhowa C (2018) High-density genotyping reveals genomic characterization, population structure and genetic diversity of Indian Mithun (Bos frontalis). Sci Rep 8:10316CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sangpuii L, Ali MA, Devi LI (2018) Serum biochemical profile of Mizoram strain female Mithun (Bos frontalis) at different age and season. Biol Rhythm Res.  https://doi.org/10.1080/09291016.2018.1474989 CrossRefGoogle Scholar
  5. 5.
    Mei C, Wang H, Zhu W, Wang H, Cheng G, Qu K, Guang X, Li A, Zhao C, Yang W, Wang C (2016) Whole-genome sequencing of the endangered bovine species Gayal (Bos frontalis) provides new insights into its genetic features. Sci Rep 25:6:19787CrossRefGoogle Scholar
  6. 6.
    Wang MS, Zeng Y, Wang X, Nie WH, Wang JH, Su WT, Otecko NO, Xiong ZJ, Wang S, Qu KX, Yan SQ (2017) Draft genome of the gayal, Bos frontalis. Gigascience 6:1–7PubMedPubMedCentralGoogle Scholar
  7. 7.
    Chi J, Fu B, Nie W, Wang J, Graphodatsky AS, Yang F (2005) New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet Genome Res 108:310–316CrossRefPubMedGoogle Scholar
  8. 8.
    Qu KX, He ZX, Nie WH, Zhang JC, Jin XD, Yang GR, Yuan XP, Huang BZ, Zhang YP, Zan LS (2012) Karyotype analysis of mithun (Bos frontalis) and mithun bull x Brahman cow hybrids. Genet Mol Res 11:131–140CrossRefPubMedGoogle Scholar
  9. 9.
    Xi D, Wu M, Fan Y, Liu Q, Leng J, Gou X, Mao H, Deng W (2012) Polymorphisms of the insulin-like growth factor-binding protein 3 gene (IGFBP3) in gayal (Bos frontalis). Gene 497:98–102CrossRefPubMedGoogle Scholar
  10. 10.
    Simoons FJ (1984) Gayal or mithan. In: Mason LL (ed) Evolution of domesticated animals. Longman, London, pp 34–39Google Scholar
  11. 11.
    Dorji T, Mannen H, Namikawa T, Inamura T, Kawamoto Y (2010) Diversity and phylogeny of mitochondrial DNA isolated from mithun Bos frontalis located in Bhutan. Anim genet 41:554–556CrossRefPubMedGoogle Scholar
  12. 12.
    Ma G, Chang H, Li S, Chen H, Ji D, Geng R, Chang C, Li Y (2007) Phylogenetic relationships and status quo of colonies for gayal based on analysis of cytochrome b gene partial sequences. J Genet Genomics 34:413–419CrossRefPubMedGoogle Scholar
  13. 13.
    Lan H, Xiong X, Lin S, Liu A, Shi L (1993) Mitochondrial DNA polymorphism of cattle (Bos taurus) and mithun (Bos frontalis) in Yunnan Province. Yi Chuan Xue Bao 20:419–425PubMedGoogle Scholar
  14. 14.
    Gou X, Wang Y, Yang S, Deng W, Mao H (2010) Genetic diversity and origin of Gayal and cattle in Yunnan revealed by mtDNA control region and SRY gene sequence variation. J Anim Breed Genet 127:154–160CrossRefPubMedGoogle Scholar
  15. 15.
    Ren Q, Liu Y, Xie X, Yan B, Zhang K, Yang Y, Qiu Q (2018) Complete mitochondrial genome of bovine species Gayal (Bos frontalis). Conserv Genet Resour 10:889–891CrossRefGoogle Scholar
  16. 16.
    Mondal M, Baruah KK, Rajkhowa C (2014) Mithun: an animal of Indian pride. Livest Res Rural Dev 26:6Google Scholar
  17. 17.
    Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Clod Spring Harbor Laboratory Press, New YorkGoogle Scholar
  18. 18.
    Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols. Humana Press, Totowa, pp 71–91Google Scholar
  19. 19.
    Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319CrossRefPubMedGoogle Scholar
  20. 20.
    Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:575–581CrossRefGoogle Scholar
  21. 21.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li SP, Chang H, Ma GL, Cheng HY (2008) Molecular phylogeny of the gayal in Yunnan China inferred from the analysis of cytochrome b gene entire sequences. Asian-Australas J Anim Sci 21:789–793CrossRefGoogle Scholar
  24. 24.
    Tanaka K, Takizawa T, Murakoshi H, Dorji T, Nyunt MM, Maeda Y, Yamamoto Y, Namikawa T (2011) Molecular phylogeny and diversity of Myanmar and Bhutan mithun based on mtDNA sequences. Animal Sci J 82:52–56CrossRefGoogle Scholar
  25. 25.
    Nijman IJ, Van Boxtel DC, Van Cann LM, Marnoch Y, Cuppen E, Lenstra JA (2008) Phylogeny of Y chromosomes from bovine species. Cladistics 24:723–726CrossRefGoogle Scholar
  26. 26.
    Wu DD, Ding XD, Wang S, Wójcik JM, Zhang Y, Tokarska M, Li Y, Wang MS, Faruque O, Nielsen R, Zhang Q (2018) Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat Ecol Evol 2:1139–1145CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Genomic Science, School of Biological SciencesCentral University of KeralaKasaragodIndia

Personalised recommendations