Molecular Biology Reports

, Volume 46, Issue 2, pp 2139–2145 | Cite as

Analysis of p.Gly12Valfs*2, p.Trp24* and p.Trp77Arg mutations in GJB2 and p.Arg81Gln variant in LRTOMT among non syndromic hearing loss Egyptian patients: implications for genetic diagnosis

  • Abdullah A. GibrielEmail author
  • Maha H. Abou-Elew
  • Saber Masmoudi
Original Article


Hearing loss (HL) is a global sensory disorder that affects children and deprives them from their rights to enjoy standard social and educational levels. Although hundreds of genetic mutations across several genes have been linked to HL, very limited studies are available on Egyptian population which has high rate of consanguinity and HL. The frequency of the p.Gly12Valfs*2, p.Trp24* and p.Trp77Arg mutations in GJB2 along with the p.Arg81Gln variant in LRTOMT gene was investigated in Egyptian patients. 103 non-syndromic HL (NSHL) Egyptian patients and 100 control subjects were recruited in this study. PCR-RFLP and Direct sequencing were performed to screen and confirm presence/absence of those mutations in Egyptian population. The p.Gly12Valfs*2 mutation was found in eight patients (7.8%) (six homozygous and two heterozygous) with an allele frequency of 6.8%. The p.Trp24* and p.Trp77Arg were absent in both HL patients and controls. Another one patient had the heterozygous variant for p.Arg81Gln in LRTOMT gene. This study reports, for the first time, the presence of a heterozygous change for the p.Arg81Gln in LRTOMT gene in one Egyptian patient. The p.Gly12Valfs*2 mutation, but not the p.Trp24* nor the p.Trp77Arg, in GJB2 is the most frequent variant among Egyptian patients and would therefore be recommended for genetic counseling and diagnosis.


Hearing loss GJB2 p.Gly12Valfs*2, p.Trp24*, p.Trp77Arg LRTOMT p.Arg81Gln 



This work was carried out with the support of The British University in Egypt (BUE) under the following research Grant Numbers (YIRG2015.7 and YIRG2017.7) that were awarded to Dr. Gibriel.

Author contributions

AAG & SM conceived and designed the experiment. MHA and AAG collected samples and obtained patients’ clinical data. AAG performed experimental work, statistical analysis and secured funding. AAG, SM and MHA drafted the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Abidi O, Boulouiz R, Nahili H, Ridal M, Alami MN, Tlili A et al (2007) GJB2 (connexin26) gene mutations in Moroccan patients with autosomal recessive non-syndromic hearing loss and carrier frequency of the common GJB2-35delG mutation. Int J Pediatr Otorhinolaryngol 71:1239–1245CrossRefPubMedGoogle Scholar
  2. 2.
    Ahmed ZM, Masmoudi S, Kalay E, Belyantseva IA, Mosrati MA, Collin RW (2008) Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans. Nat Genet 40:1335–1340CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Al-Achkar W, Moassass F, Al-Halabi B, Al-Ablog A (2011) Mutations of the Connexin 26 gene in families with non-syndromic hearing loss. Mol Med Rep 4:331–335CrossRefPubMedGoogle Scholar
  4. 4.
    Alvarez A, Castillo I, Villamar M, Aguirre LA, Gonzalez-Neira A, Lopez-Nevot A et al (2005) High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive nonsyndromic hearing loss. Am J Med Genet A 137A:255–258CrossRefPubMedGoogle Scholar
  5. 5.
    Belguith H, Tlili A, Dhouib H, Ben Rebeh I, Lahmar I, Charfeddine I et al (2009) Mutation in gap and tight junctions in patients with non-syndromic hearing loss. Biochem Biophys Res Commun 385:1–5CrossRefPubMedGoogle Scholar
  6. 6.
    Ben Saïd M, Hmani-Aifa M, Amar I, Baig SM, Mustapha M, Delmaghani S et al (2010) High frequency of the p.R34X mutation in the TMC1 gene associated with nonsyndromic hearing loss is due to founder effects. Genet Test Mol Biomark 14:307–311CrossRefGoogle Scholar
  7. 7.
    Bosch J, Lebeko K, Jacques J, Nziale N, Dandara C, Makubalo N et al (2014) In search of genetic markers for nonsyndromic deafness in Africa: a study in Cameroonians and Black South Africans with the GJB6 and GJA1 candidate genes. OMICS 18(7):481–485Google Scholar
  8. 8.
    Bouzid A, Smeti I, Dhouib L, Roche M, Achour I, Khalfallah A, Gibriel AA, Charfeddine I, Ayadi H, Lachuer J, Ghorbel A, Petit C, Masmoudi S (2018) Down-expression of P2RX2, KCNQ5, ERBB3 and SOCS3 through DNA hypermethylation in elderly women with presbycusis. Biomarkers 23(4):347–356CrossRefPubMedGoogle Scholar
  9. 9.
    Bouzid A, Smeti I, Chakroun A, Loukil S, Gibriel AA, Grati M, Ghorbel A, Masmoudi S (2018) CDH23 Methylation status and presbycusis risk in elderly women. Front Aging Neurosci 10:241CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carrasquillo MM, Zlotogora J, Barges S, Chakravarti A (1997) Two different connexin 26 mutations in an inbred kindred segregating non-syndromic recessive deafness: implications for genetic studies in isolated populations. Hum Mol Genet 6:2163–2172CrossRefPubMedGoogle Scholar
  11. 11.
    Chakchouk I, Ben Said M, Jbeli F, Benmarzoug R, Loukil S, Smeti I et al (2015) NADf chip, a two-color microarray for simultaneous screening of multigene mutations associated with hearing impairment in North African Mediterranean countries. J Mol Diagn 17:155–161CrossRefPubMedGoogle Scholar
  12. 12.
    Charif M, Abidi O, Boulouiz R, Nahili H, Rouba H, Kandil M et al (2012) Molecular analysis of the TMPRSS3 gene in Moroccan families with non-syndromic hearing loss. Biochem Biophys Res Commun 419:643–647CrossRefPubMedGoogle Scholar
  13. 13.
    Charif M, Bounaceur S, Abidi O, Nahili H, Rouba H, Kandil M et al (2012) The c.242G>A mutation in LRTOMT gene is responsible for a high prevalence of deafness in the Moroccan population. Mol Biol Rep 39:11011–11016CrossRefPubMedGoogle Scholar
  14. 14.
    Cryns K, Orzan E, Murgia A, Huygen PL, Moreno F, del Castillo I et al (2004) A genotype–phenotype correlation for GJB2 (connexin 26) deafness. J Med Genet 41:147–154CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dalamón V, Béhèran A, Diamante F, Pallares N, Diamante V, Elgoyhen AB (2005) Prevalence of GJB2 mutations and the del(GJB6-D13S1830) in Argentinean non-syndromic deaf patients. Hear Res 207:43–49CrossRefPubMedGoogle Scholar
  16. 16.
    Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR et al (1999) Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6:2173–2177CrossRefGoogle Scholar
  17. 17.
    Du X, Schwander M, Moresco EM, Viviani P, Haller C, Hildebrand MS (2008) A catechol-o-methyltransferase that is essential for auditory function in mice and humans. Proc Natl Acad Sci USA 105:14609–14614CrossRefPubMedGoogle Scholar
  18. 18.
    Gasparini P, Estivill X, Volpini V, Totaro A, Castellvi-Bel S, Govea N et al (1997) Linkage of DFNB1 to non-syndromic neurosensory autosomal-recessive deafness in Mediterranean families. Eur J Hum Genet 5:83–88PubMedGoogle Scholar
  19. 19.
    Gates GA, Mills JH (2005) Presbycusis. Lancet 366:1111–1120CrossRefPubMedGoogle Scholar
  20. 20.
    Gibriel AA (2012) Options available for labelling nucleic acid samples in DNA microarray-based detection methods. Brief Funct Genom 4:311–318CrossRefGoogle Scholar
  21. 21.
    Gibriel AA, Tate RJ, Yu Y, Rawson-Lax E, Hammer HM, Tettey JN et al (2013) The p.Arg86Gln change in GARP2 (glutamic acid-rich protein-2) is a common West African-related polymorphism. Gene 1:155–158CrossRefGoogle Scholar
  22. 22.
    Gibriel AA, Adel O (2017) Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: detection and applications. Mutat Res 773:66–90CrossRefPubMedGoogle Scholar
  23. 23.
    Gorlin RJ, Toriello HV, Cohen MM (1995) Hereditary hearing loss and its syndromes: genetic hearing loss with associated abnormalities. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Green GE, Scott DA, McDonald JM, Woodworth GG, Sheffield VC, Smith RJ (1999) Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 281:2211–2216CrossRefPubMedGoogle Scholar
  25. 25.
    Gronskov K, Larsen LA, Rendtorff ND, Parving A, Norgaard-Pedersen B, Brondum-Nielsen K (2004) GJB2 and GJB6 mutations in 165 Danish patients showing non-syndromic hearing impairment. Genet Test 8:181–184CrossRefPubMedGoogle Scholar
  26. 26.
    Janecke AR, Hirst-Stadlmann A, Günther B, Utermann B, Müller T, LÓ§ffler J et al (2002) Progressive hearing loss, and recurrent sudden sensorineural hearing loss associated with GJB2 mutations phenotypic spectrum and frequencies of GJB2 mutations in Austria. Hum Genet 111:145–153CrossRefPubMedGoogle Scholar
  27. 27.
    Kalay E, Caylan R, Kremer H, de Brouwer AP, Karaguzel A (2005) GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations. Hear Res 203:88–93CrossRefPubMedGoogle Scholar
  28. 28.
    Kawahara M, Sakayori M, Shiraishi K, Nomizu T, Takeda M, Abe R et al (2004) Identification and evaluation of 55 genetic variations in the BRCA1 and the BRCA2 genes of patients from 50 Japanese breast cancer families. J Hum Genet 7:391–395Google Scholar
  29. 29.
    Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G et al (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83CrossRefPubMedGoogle Scholar
  30. 30.
    Lebeko K, Sloan-Heggen CM, Noubiap JJN, Dandara C, Kolbe DL, Ephraim SS et al (2017) Targeted genomic enrichment and massively parallel sequencing identifies novel nonsyndromic hearing impairment pathogenic variants in Cameroonian families. Clin Genet 90(3):288–290CrossRefGoogle Scholar
  31. 31.
    Mahayri ZN, Monem FS (2012) GJB2 gene mutations in Syrians with sensorineural hearing loss. Middle East J Med Genet 1:80–84CrossRefGoogle Scholar
  32. 32.
    Marazita ML, Ploughman LM, Rawlings B, Remington E, Arnos KS, Nance WE (1993) Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet 46:486–491CrossRefPubMedGoogle Scholar
  33. 33.
    Martin PE, Coleman SL, Casalotti SO, Forge A, Evans WH (1999) Properties of connexin 26 gap junctional proteins derived from mutations associated with non-syndromal hereditary deafness. Hum Mol Genet 8:2369–2376CrossRefPubMedGoogle Scholar
  34. 34.
    Mercier G, Bathelier C, Lucotte G (2005) Connexin 26 mutation 35delG:prevalence of carriers in various regions in France. Int J Pediatr Otorhinolaryngol 69:1187–1190CrossRefPubMedGoogle Scholar
  35. 35.
    Minarik G, Ferak V, Ferakova E, Ficek A, Polakova H, Kadasi L (2003) High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with non-syndromic hearing loss (NSHL). Gen Physiol Biophys 22:549–556PubMedGoogle Scholar
  36. 36.
    Mohamed MR, Alesutan I, Föller M, Sopjani M, Bress A, Baur M (2010) Functional analysis of a novel I71N mutation in the GJB2 gene among Southern Egyptians causing autosomal recessive hearing loss. Cell Physiol Biochem 26:959–966CrossRefPubMedGoogle Scholar
  37. 37.
    Moreno F, San Millán JL, Hernández C, Del Castillo I (2003) Contribuciones Científicas al Conocimiento de las Bases Moleculares de Cuatro Enfermedades Genéticas, 1 edn. Real Patronato sobre Discapacidad, MadridGoogle Scholar
  38. 38.
    Morton NE (1991) Genetic epidemiology of hearing impairment. Ann N Y Acad Sci 630:16–31CrossRefPubMedGoogle Scholar
  39. 39.
    Morton CC, Nance WE (2006) Newborn hearing screening—a silent revolution. N Engl J Med 354:2151–2164CrossRefPubMedGoogle Scholar
  40. 40.
    Najmabadi H, Cucci RA, Sahebjam S, Kouchakian N, Farhadi M, Kahrizi K (2002) GJB2 mutations in Iranians with autosomal recessive non-syndromic sensorineural hearing loss. Hum Mutat 19:572–581CrossRefPubMedGoogle Scholar
  41. 41.
    Neocleous V, Aspris A, Shahpenterian V, Nicolaou V, Panagi C, Ioannou I et al (2006) High frequency of 35delG GJB2 mutation and absence of del(GJB6- D13S1830) in Greek Cypriot patients with nonsyndromic hearing loss. Genet Test 10:285–289CrossRefPubMedGoogle Scholar
  42. 42.
    Park HJ, Hahn SH, Chun YM, Park K, Kim HN (2000) Connexin 26 mutations associated with non-syndromic hearing loss. Laryngoscope 110:1535–1538CrossRefPubMedGoogle Scholar
  43. 43.
    Rabionet R, Gasparini P, Estivill X (2000) Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat 16:190–202CrossRefPubMedGoogle Scholar
  44. 44.
    RamShankar M, Girirajan S, Dagan O, Ravi Shankar HM, Jalvi R, Rangasayee R et al (2003) Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. J Med Genet 40:e68CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Riahi Z, Hammami H, Ouragini H, Messai H, Zainine R, Bouyacoub Y et al (2013) Update of the spectrum of GJB2 gene mutations in Tunisian families with autosomal recessive nonsyndromic hearing loss. Gene 525:1–4CrossRefPubMedGoogle Scholar
  46. 46.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354CrossRefPubMedGoogle Scholar
  47. 47.
    Salman M, Bashir R, Imtiaz A, Maqsood A, Mujtaba G, Iqbal M et al (2015) Mutations of GJB2 encoding Connexin 26 contribute to nonsyndromic moderate and severe hearing loss in Pakistan. Eur Arch Otorhinolaryngol 272:2071–2075CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Santoro ML, Mobili L, Mesoraca A, Giorlandino C (2003) First report of prenatal diagnosis of genetic congenital deafness in a routine prenatal genetictest. Prenat Diagn 23:1083–1085CrossRefPubMedGoogle Scholar
  49. 49.
    Schrijver I (2004) Hereditary non-syndromic sensorineural hearing loss: transforming silence to sound. J Mol Diagn 6:275–284CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Seeman P, Malikova M, Raskova D, Bendova O, Groh D, Kubalkova M et al (2004) Spectrum and frequencies of mutations in the GJB2 (Cx26) gene among 156 Czech patients with pre-lingual deafness. Clin Genet 66:152–157CrossRefPubMedGoogle Scholar
  51. 51.
    Shahin H, Walsh T, Sobe T, Lynch E, King M, Avraham KB et al (2002) Genetics of congenital deafness in the Palestinian population: multiple connexin 26 alleles with shared origins in the Middle East. Hum Genet 110:284–289CrossRefPubMedGoogle Scholar
  52. 52.
    Snoeckx RL, Hassan DM, Kamal NM, Van Den Bogaert K, Van Camp G (2005) Mutation analysis of the GJB2 (connexin 26) gene in Egypt. Hum Mutat 26:60–61CrossRefPubMedGoogle Scholar
  53. 53.
    Tekin M, Boğoclu G, Arican ST, Orman MN, Tastan H, Elsobky E et al (2005) Evidence for single origins of 35delG and delE120 mutations in the GJB2 gene in Anatolia. Clin Genet 67:31–37CrossRefPubMedGoogle Scholar
  54. 54.
    Van Camp G, Smith RJH (2019) Hereditary hearing loss homepage.
  55. 55.
    Vanwesemael M, Schrauwen I, Ceuppens R, Alasti F, Jorssen E, Farrokhi E et al (2011) A 1 bp deletion in the dual reading frame deafness gene LRTOMT causes a frameshift from the first into the second reading frame. Am J Med Genet A 155A:2021–2023CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Abdullah A. Gibriel
    • 1
    Email author
  • Maha H. Abou-Elew
    • 2
  • Saber Masmoudi
    • 3
  1. 1.Biochemistry and Molecular Biology Department, Faculty of PharmacyThe British University in Egypt (BUE)CairoEgypt
  2. 2.Otorhinolaryngology Department, Audio-Vestibular Unit, Faculty of Medicine, Kasr Al-Aini El-Manial University HospitalCairo UniversityGizaEgypt
  3. 3.Laboboratoire Procédés de Criblage Moléculaire et Cellulaire, Centre de Biotechnologie de SfaxUniversité de SfaxSfaxTunisia

Personalised recommendations