Molecular Biology Reports

, Volume 46, Issue 2, pp 2555–2559 | Cite as

Exposure to bisphenol A: current levels from food intake are toxic to human cells

  • Karla L. Hernández-Hernández
  • Natalia Tapia-Orozco
  • Miquel Gimeno
  • Ana María Espinosa-García
  • José Antonio García-García
  • Daniela Araiza-Olivera
  • Francisco Sánchez-Bartez
  • Isabel Gracia-Mora
  • Manuel Gutierrez-Aguilar
  • Roeb García-ArrazolaEmail author
Short Communication


In the present work, cell lines of different origin were exposed to BPA levels from food intake reported elsewhere. Specifically, we used an in vitro assay to determine cytotoxicity of BPA in three cell lines: MCF7 (breast cancer), PC3 (prostate cancer) and 3T3-L1 (mouse fibroblast). Cytotoxic effects were observed at concentrations higher than 50 μg/mL which is above the involuntary exposure level of BPA described before in fresh, canned and frozen foods and beverages. Furthermore, medial inhibitory concentrations (IC50) of 85.17 μg/mL and 88.48 μg/mL were observed for PC3 and 3T3-L1, respectively, and a slightly lower IC50 of 64.67 μg/mL for MCF7. These results highlight BPA’s toxicity potential at current levels from food intake. The cell line-dependent divergent response to BPA reported herein is discussed.


Cytotoxicity Bisphenol A Food 



We thank DGAPA PAPIIT for funding project TA200319.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Aghajanpour-Mir SM, Zabihi E, andAkhavan-Niaki H (2016) The genotoxic and cytotoxic effects of bisphenol-A (BPA) in MCF-7 cell line and amniocytes. Int J Mol Cell Med Winter 5:21–29Google Scholar
  2. 2.
    Araiza-Olivera D, Feng Y, Semenova G, Prudnikova T, Rhodes J, Chernoff J (2018) Suppression of RAC1-driven malignant melanoma by Group A PAK inhibitors. Oncogene 37:944–952CrossRefPubMedGoogle Scholar
  3. 3.
    Buoso E, Galasso M, Ronfani M, Papale A, Galbiati V, Eberini I, Marinovich M, Racchi M, Corsini E (2017) The scaffold protein RACK1 is a target of endocrine disrupting chemicals (EDCs) with important implication in immunity. Toxicol Appl Pharmacol 325:37–47CrossRefPubMedGoogle Scholar
  4. 4.
    Allard P (2014) Bisphenol A. In: Gupta R (ed) Biomarkers in toxicology. Academic Press, New York, pp 459–474CrossRefGoogle Scholar
  5. 5.
    Caporossi L, Papaleo B (2017) Bisphenol A and metabolic diseases: challenges for occupational medicine. Int J Environ Res Public Health 25(9):14Google Scholar
  6. 6.
    Castillo Morales G (2004) Ensayos Toxicológicos y Métodos de Evaluación de Calidad de Aguas. Centro Internacional de Investigaciones para el Desarrollo, Instituto Mexicano de Tecnología del Agua, MexicoGoogle Scholar
  7. 7.
    Christensen K, Lorber M (2014) Exposure to BPA in children-media-based and biomonitoring-based approaches. Toxics 2:134–157CrossRefGoogle Scholar
  8. 8.
    Cao XL, Corriveau J, Popovic S (2009) Levels of bisphenol A in canned soft drink products in canadian markets. J Agric Food Chem 57:1307–1311CrossRefPubMedGoogle Scholar
  9. 9.
    FAO (Food And Agriculture Organization) (2014) Codex alimentarius CAC/GL 3-1989Google Scholar
  10. 10.
    Filardo EJ, Graeber CT, Quinn JA, Resnick M (2006) Distribution of GPR30, a seven membrane–spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin Cancer Res 12:6359–6366CrossRefPubMedGoogle Scholar
  11. 11.
    Gabb HA, Blake C (2016) An informatics approach to evaluating combined chemical xposures from consumer products: a case study of asthma-associated chemicals and potential endocrine disruptors. Environ Health Perspect 124:1155–1165CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kasper-Sonnenberg M, Wittsiepe J, Wald K, Koch HM, Wilhelm M (2017) Pre-pubertal exposure with phthalates and bisphenol A and pubertal development. PLoS ONE 12(11):e0187922CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Katzenellenbogen BS (2000) Molecular mechanisms of estrogen action: selective ligands and receptor pharmacology. J Steroid Biochem Mol Biol 74:279–285CrossRefPubMedGoogle Scholar
  14. 14.
    Kenichi S (2004) Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol 141:209–214CrossRefGoogle Scholar
  15. 15.
    Lorber M, Schecter A, Paepke O, Shropshire W, Christensen K, Birnbaum L (2015) Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ Int 77:55–62CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Maqbool F, Mostafalou S, Bahadar H, Abdollahi M (2016) Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci 145:265–273CrossRefPubMedGoogle Scholar
  17. 17.
    Marquez-Bravo LG, Gierthy JF (2008) Differential expression of estrogen receptor alpha (ERalpha) protein in MCF-7 breast cancer cells chronically exposed to TCDD. J Cell Biochem 103:636–647CrossRefPubMedGoogle Scholar
  18. 18.
    Mimoto M, Nadal A, Sargis R (2017) Polluted pathways: mechanisms of metabolic disruption by endocrine disrupting chemicals. Curr Environ Health Rep 4:208–222CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Miller C (2015) A brief on the structure and function of estrogen receptor alpha. (BCMB8010 enzyme project).
  20. 20.
    Montano M, Müller V, Trobaugh A, Katzenellenbogen B (1995) The carboxyterminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol Endocrinol 9:814–825PubMedGoogle Scholar
  21. 21.
    Moosa A, Shu H, Sarachana T, Hu VW (2018) Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder? Horm Behav 101:13–21CrossRefPubMedGoogle Scholar
  22. 22.
    Neri M, Virzì GM, Brocca A, Garzotto F, Kim JC, Ramponi F, de Cal M, Lorenzin A, Brendolan A, Nalesso F, Zanella M, Ronco C (2015) In vitro cytotoxicity of bisphenol A in monocytes cell line. Blood Purif 40:180–186CrossRefPubMedGoogle Scholar
  23. 23.
    Perez-Rivero JJ, Aguilar-Setién A, Villa-Godoy A, Serrano H (2005) Relación entre estructura y función de receptores para hormonas esteroidales: receptores estrogénicos. VetMex 36(4):437–452Google Scholar
  24. 24.
    Pinson A, Bourguignon JP, Parent AS (2016) Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology 4:706–722CrossRefPubMedGoogle Scholar
  25. 25.
    Pu Y, Gingrich JD, Steibel JP, Veiga-Lopez A (2017) Sex-specific modulation of fetal adipogenesis by gestational bisphenol A and bisphenol S exposure. Endocrinology 158:3844–3858CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ramírez-Sánchez IM, Martínez-Austria P, Quiroz-Alfaro MA, Bandala ER (2015) Efectos de los estrógenos como contaminantes emergentes en la salud y el ambiente. Tecnología y Ciencias del Agua 6:31–42Google Scholar
  27. 27.
    Reppeto G, Del Peso A, Zurita J (2012) La aplicaciòn de procedimientos in vitro en la evaluación toxicológica alimentaria. Díaz de Santos, MadridGoogle Scholar
  28. 28.
    Routledge EJ, White R, Parker MG, Sumpter JP (2000) Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) a and ERb. J Biol Chem 275:35986–35993CrossRefPubMedGoogle Scholar
  29. 29.
    Russo G, Capuozzo A, Barbato F, Irace C, Santamaria R, Grumetto L (2018) Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data. Chemosphere 201:432–440CrossRefPubMedGoogle Scholar
  30. 30.
    Rutkowska AZ, Szybiak A, Serkies K, Rachoń D (2016) Endocrine disrupting chemicals as potential risk factor for estrogen-dependent cancers. Pol Arch Med Wewn 126:562–570PubMedGoogle Scholar
  31. 31.
    Sakhi A, Lillegaard I, Voorspoels S, Carlsen M, Loken E, Brantsaeter A, Haugen M, Meltzer H, Thomsen C (2014) Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults. Environ Int 73:259–269CrossRefPubMedGoogle Scholar
  32. 32.
    Sanchez de Badajoz E, Lage-Sánchez JM, Sánchez-Gallegos P (2017) Endocrine disruptors and prostate cancer. Arch Esp Urol 70:331–335PubMedGoogle Scholar
  33. 33.
    Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2017) Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol 51:56–70CrossRefPubMedGoogle Scholar
  34. 34.
    Shaw I (2008) Endrocrine-disrupting chemicals in food. Woodhead Publishing Limited, New ZealandGoogle Scholar
  35. 35.
    Song Y, Chou EL, Baecker A, You NC, Song Y, Sun Q, Liu S Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J Diab 8:516–532CrossRefGoogle Scholar
  36. 36.
    Tabb M, Blumberg B (2006) New modes of action for endocrine-disrupting. Mol Endocrinol 20:475–482CrossRefPubMedGoogle Scholar
  37. 37.
    Tao X, Xu L, Yin L, Han X, Qi Y, Xu Y, Song S, Zhao Y, Peng J (2017) Dioscin induces prostate cancer cell apoptosis through activation of estrogen receptor-β. Cell Death Dis. 8:e2989CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Trasande L, Zoeller RT, Hass U, Kortenkamp A, Grandjean P, Myers JP, DiGangi J, Hunt PM, Rudel R, Sathyanarayana S, Bellanger M, Hauser R, Legler J, Skakkebaek NE, Heindel JJ (2016) Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis. Andrology 4:565–572CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Völkel W, Bittner N, Dekant W (2005) Quantitation of bisphenol A and bisphenol A glucuronide in biological samples by high performance liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 33:1748–1757CrossRefPubMedGoogle Scholar
  40. 40.
    Wang L, Hao J, Hu J, Pu J, Lü Z, Zhao L, Wang Q, Yu Q, Wang Y, Li G (2012) Protective effects of ginsenosides against bisphenol A-induced cytotoxicity in 15P-1 Sertoli cells via extracellular signal-regulated kinase 1/2 signalling and antioxidant mechanisms. Basic Clin Pharmacol Toxicol 111:42–49PubMedGoogle Scholar
  41. 41.
    Zhang X, Zhang L, Feng Y, Chen B, Feng Y, Liang G, Li L, Shen W (2012) Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol Biol Rep 39:8621–8628CrossRefPubMedGoogle Scholar
  42. 42.
    Zlatnik MG (2016) Endocrine-disrupting chemicals and reproductive health. J Midwifery Womens Health 61:442–455CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Karla L. Hernández-Hernández
    • 1
  • Natalia Tapia-Orozco
    • 1
  • Miquel Gimeno
    • 1
  • Ana María Espinosa-García
    • 2
  • José Antonio García-García
    • 2
  • Daniela Araiza-Olivera
    • 3
  • Francisco Sánchez-Bartez
    • 4
  • Isabel Gracia-Mora
    • 4
  • Manuel Gutierrez-Aguilar
    • 5
  • Roeb García-Arrazola
    • 1
    Email author
  1. 1.Departamento de Alimentos y Biotecnologia, Facultad de QuimicaUniversidad Nacional Autónoma de MexicoCoyoacanMexico
  2. 2.Hospital General de MéxicoMexico CityMexico
  3. 3.Departamento de Quimica de BiomacromoleculasInstituto de Quimica, Universidad Nacional Autonoma de MexicoMexico CityMexico
  4. 4.Departamento de Química Inorgánica y Nuclear, Facultad de QuímicaUNAMCiudad de MexicoMexico
  5. 5.Departamento de Bioquimica, Facultad de QuimicaUniversidad Nacional Autonoma de MexicoMexico CityMexico

Personalised recommendations