Advertisement

Myxococcus xanthus truncated globin HbO: in silico analysis and functional characterization

  • Santosh Kumar Singh
  • Rajinder Kaur
  • Ashok Kumar
  • Ramandeep KaurEmail author
Original Article
  • 16 Downloads

Abstract

Truncated globins are 20–40 amino acids shorter than full length globins. Till date, globins have been characterized predominantly from bacteria involved in pathogenicity, nitrogen fixation and photosynthesis, where they are implicated in bacterial virulence within the host, protection of nitrogenase from oxygen inactivation and prevention of oxidative damage to the photosynthetic machinery respectively. Myxococcus xanthus, the model myxobacterium, is an obligate aerobe with a multicellular stage in its life cycle where cells encounter oxygen limitation. This work was undertaken to investigate the potential role of the truncated globin in M. xanthus. To examine the role of globins in this unique group of bacteria, the gene coding for a putative truncated globin (HbO) was identified in the genome of M. xanthus DK 1622. The sequence analysis by bioinformatics approaches revealed that HbO from M. xanthus (Mx-HbO) likely adopts a 2-on-2 alpha helical fold of the truncated globins. The gene coding for Mx-HbO was cloned and its expression in E. coli imparted reddish tinge to the cells. The spectral analysis confirmed it to be a functional globin. The expression of Mx-HbO in the heterologous host improved its growth, resulting in the attainment of higher cell density in culture. The transcript of Mx-hbO was induced threefold in the host cells when grown under low aeration condition as compared to the cells grown under high aeration condition. In M. xanthus, an obligate aerobe, where cell growth accompanies swarming, there is a higher density of cells in the middle of the swarm. Our results suggest that Mx-HbO is a functional globin and could facilitate the growth of cells facing oxygen deprivation, the condition prevailing in the middle of the swarm.

Keywords

Myxococcus xanthus Truncated hemoglobin Transcriptional analysis Growth advantage 

Notes

Acknowledgements

SKS is grateful to the Department of Biotechnology, Government of India, for fellowship. The study was supported by the grant sanctioned to Ramandeep Kaur by the Department of Biotechnology, Government of India. The authors would like to thank Sonia Sharma, Department of Biotechnology, Guru Nanak Dev University, Amritsar, India, for help in formatting the manuscript.

Funding

This study was supported by Department of Biotechnology, Ministry of Science and Technology (Grant Number BT/PR12695/BRB/10/716/2009).

Compliance with ethical standards

Conflict of interest

Authors declare no financial/non-financial conflicts of interest.

Supplementary material

11033_2019_4662_MOESM1_ESM.pdf (574 kb)
Supplementary material 1 (PDF 573 KB)

References

  1. 1.
    Perutz MF (1979) Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem 48:327–386Google Scholar
  2. 2.
    Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution, and pathology. Benjamin-Cummings Publishing Company, San Francisco, pp 1003–1004Google Scholar
  3. 3.
    Hardison R (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol 201(8):1099–1117Google Scholar
  4. 4.
    Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL et al (2005) Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99(1):110–119Google Scholar
  5. 5.
    Poole RK, Hughes MN (2000) New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36(4):775–783Google Scholar
  6. 6.
    Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Guertin M, Gough J et al (2005) Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life. Proc Natl Acad Sci USA 102(32):11385–11389Google Scholar
  7. 7.
    Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J, Dewilde S et al (2006) A phylogenomic profile of globins. BMC Evol Biol 6:31Google Scholar
  8. 8.
    Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 277(2):871–8744Google Scholar
  9. 9.
    Vuletich DA, Lecomte JT (2006) A phylogenetic and structural analysis of truncated hemoglobins. J Mol Evol 62(2):196–210Google Scholar
  10. 10.
    Nardini M, Pesce A, Milani M, Bolognesi M (2007) Protein fold and structure in the truncated (2/2) globin family. Gene 398(1–2):2–11Google Scholar
  11. 11.
    Vinogradov SN, Bailly X, Smith DR, Tinajero-Trejo M, Poole RK, Hoogewijs D (2013) Microbial eukaryote globins. Adv Microb Physiol 63:391–446.  https://doi.org/10.1016/B978-0-12-407693-8.00009-1 Google Scholar
  12. 12.
    Samuni U, Dantsker D, Ray A, Wittenberg JB, Wittenberg BA, Dewilde S et al (2003) Kinetic modulation in carbonmonoxy derivatives of truncated hemoglobins: the role of distal heme pocket residues and extended apolar tunnel. J Biol Chem 278(29):27241–27250Google Scholar
  13. 13.
    Reichenbach H, Dworkin M (1992) The myxobacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds.) The prokaryotes. Springer, New York, pp 3416–3487Google Scholar
  14. 14.
    Schaberle TF, Goralski E, Neu E, Erol O, Holzl G, Dormann P et al (2010) Marine myxobacteria as a source of antibiotics–comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina. Mar Drugs 8(9):2466–2479.  https://doi.org/10.3390/md8092466 Google Scholar
  15. 15.
    Kaiser D, Welch R (2004) Dynamics of fruiting body morphogenesis. J Bacteriol 186(4):919–927Google Scholar
  16. 16.
    Weissman KJ, Müller R (2010) Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 27(9):1276–1295.  https://doi.org/10.1039/c001260m Google Scholar
  17. 17.
    Mishra PC, Singh SK, Kaur R (2015) Diversity of globins in myxobacteria. Int J Biochem Res Rev 6(3):92.  https://doi.org/10.9734/IJBcRR/2015/15532 Google Scholar
  18. 18.
    Fojtikova V, Stranava M, Vos MH, Liebl U, Hranicek J, Kitanishi K et al (2015) Kinetic analysis of a globin-coupled histidine kinase, AfGcHK: effects of the heme iron complex, response regulator, and metal cations on autophosphorylation activity. Biochemistry 54(32):5017–5029.  https://doi.org/10.1021/acs.biochem.5b00517 Google Scholar
  19. 19.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410Google Scholar
  20. 20.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242Google Scholar
  21. 21.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana press, New York, pp 571–607Google Scholar
  22. 22.
    Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898Google Scholar
  23. 23.
    Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4(2):155–161Google Scholar
  24. 24.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132Google Scholar
  25. 25.
    Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182(2):319–326Google Scholar
  26. 26.
    McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405Google Scholar
  27. 27.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201Google Scholar
  28. 28.
    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T et al (2014) SWISS-MODEL: modeling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(Web Server issue):W252–W258.  https://doi.org/10.1093/nar/gku340 Google Scholar
  29. 29.
    Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170Google Scholar
  30. 30.
    Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85Google Scholar
  31. 31.
    Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519Google Scholar
  32. 32.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291Google Scholar
  33. 33.
    Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410Google Scholar
  34. 34.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612Google Scholar
  35. 35.
    Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock:servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367Google Scholar
  36. 36.
    Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36(Web Server issue):W229–W232.  https://doi.org/10.1093/nar/gkn186 Google Scholar
  37. 37.
    Narro ML, Adams CW, Cohen SN (1990) Isolation and characterization of Rhodobacter capsulatus mutants defective in oxygen regulation of the puf operon. J Bacteriol 172(8):4549–4554Google Scholar
  38. 38.
    Coppola D, Giordano D, Tinajero-Trejo M, di Prisco G, Ascenzi P, Poole RK et al (2013) Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species. Biochim Biophys Acta 1834(9):1923–1931.  https://doi.org/10.1016/j.bbapap.2013.02.018 Google Scholar
  39. 39.
    Pesce A, Nardini M, Labarre M, Richard C, Wittenberg JB, Wittenberg BA et al (2011) Structural characterization of a group II 2/2 hemoglobin from the plant pathogen Agrobacterium tumefaciens. Biochim Biophys Acta 1814(6):810–816.  https://doi.org/10.1016/j.bbapap.2010.11.001 Google Scholar
  40. 40.
    Milani M, Savard PY, Ouellet H, Ascenzi P, Guertin M, Bolognesi M (2003) A TyrCD1/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O. Proc Natl Acad Sci USA 100(10):5766–5771Google Scholar
  41. 41.
    Ouellet H, Milani M, LaBarre M, Bolognesi M, Couture M, Guertin M (2007) The roles of Tyr(CD1) and Trp(G8) in Mycobacterium tuberculosis truncated hemoglobin O in ligand binding and on the heme distal site architecture. Biochemistry 46(41):11440–11450Google Scholar
  42. 42.
    Ouellet YH, Daigle R, Lague P, Dantsker D, Milani M, Bolognesi M et al (2008) Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water. J Biol Chem 283(40):27270–27278.  https://doi.org/10.1074/jbc.M804215200 Google Scholar
  43. 43.
    Pathania R, Navani NK, Rajamohan G, Dikshit KL (2002) Mycobacterium tuberculosis hemoglobin HbO associates with membranes and stimulates cellular respiration of recombinant Escherichia coli. J Biol Chem 277(18):15293–15302Google Scholar
  44. 44.
    Khosla C, Bailey JE (1988) Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331(6157):633–635Google Scholar
  45. 45.
    Khosla C, Curtis JE, DeModena J, Rinas U, Bailey JE (1990) Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology 8(9):849–853Google Scholar
  46. 46.
    Tao L, Sedkova N, Yao H, Ye RW, Sharpe PL, Cheng Q (2007) Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. Appl Microbiol Biotechnol 74(3):625–633Google Scholar
  47. 47.
    Yang JK, Xiong W, Xu L, Li J, Zhao XJ (2015) Constitutive expression of Campylobacter jejuni truncated hemoglobin CtrHb improves the growth of Escherichia coli cell under aerobic and anaerobic conditions. Enzyme Microb Technol 75–76:64–70.  https://doi.org/10.1016/j.enzmictec.2015.04.006 Google Scholar
  48. 48.
    Kaiser D, Robinson M, Kroos L (2010) Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2(8):a000380.  https://doi.org/10.1101/cshperspect.a000380 Google Scholar
  49. 49.
    Niemann J, Tisa LS (2008) Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain CcI3. J Bacteriol 190(23):7864–7867.  https://doi.org/10.1128/JB.01100-08 Google Scholar
  50. 50.
    Coats V, Schwintzer CR, Tjepkema JD (2009) Truncated hemoglobins in Frankia CcI3: effects of nitrogen source, oxygen concentration, and nitric oxide. Can J Microbiol 55(7):867–873.  https://doi.org/10.1139/w09-042 Google Scholar
  51. 51.
    Pawaria S, Lama A, Raje M, Dikshit KL (2008) Responses of Mycobacterium tuberculosis hemoglobin promoters to in vitro and in vivo growth conditions. Appl Environ Microbiol 74(11):3512–3522.  https://doi.org/10.1128/AEM.02663-07 Google Scholar
  52. 52.
    Parrilli E, Giuliani M, Giordano D, Russo R, Marino G, Verde C et al (2010) The role of a 2-on-2 haemoglobin in oxidative and nitrosative stress resistance of Antarctic Pseudoalteromonas haloplanktis TAC125. Biochimie 92(8):1003–1009.  https://doi.org/10.1016/j.biochi.2010.04.018 Google Scholar
  53. 53.
    Coppola D, Giordano D, Milazzo L, Howes BD, Ascenzi P, di Prisco G et al (2018) Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Nitric Oxide 73:39–51.  https://doi.org/10.1016/j.niox.2017.12.006 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of Botanical and Environmental SciencesGuru Nanak Dev UniversityAmritsarIndia
  3. 3.Centre for Systems Biology and BioinformaticsPanjab UniversityChandigarhIndia
  4. 4.Department cum National Centre for Human Genome Studies and ResearchPanjab UniversityChandigarhIndia

Personalised recommendations