Molecular Biology Reports

, Volume 46, Issue 2, pp 2003–2011 | Cite as

Molecular profiling of adult acute myeloid and lymphoid leukemia in a major referral center in Lebanon: a 10-year experience report and review of the literature

  • Nada Assaf
  • Jean El-Cheikh
  • Ali Bazarbachi
  • Ziad Salem
  • Chantal Farra
  • Zaher Chakhachiro
  • Samer Nassif
  • Ghazi Zaatari
  • Rami MahfouzEmail author
Original Article


Recurrent genetic abnormalities confer distinct morphologic features and play a role in determining the clinical behavior, prognosis and adequate treatment of acute leukemia. In the MENA region, only one study targets the frequency of genetic modifications in AML, reporting a higher occurrence of acute promyelocytic leukemia in Lebanon. Determining the frequency of translocations and gene mutations in acute myeloid and lymphoid leukemia cases in an adult patients’ population in Lebanon and comparing the resultant genetic profile with the published international molecular profile of adult acute leukemia. Laboratory results of adult patients diagnosed with AML or ALL presenting to AUBMC for genetic profiling between years 2006 until June 2016 were reviewed. Genetic profiling of AML cases in our CAP accredited molecular diagnostics laboratory consists of a validated lab developed RT-PCR for the detection of RUNX1/RUNX1T1, CBFB/MYH11, KMT2A/MLLT3, PML-RARA, and BCR-ABL and mutations in the FLT3 receptor, NPM1, c-kit and CEPBA genes. The ALL panel tests for the presence of BCR-ABL1, ETV6/RUNX1; KMT2A/AFF1, and TCF3-PBX1. We reviewed 580 AML and 175 ALL cases. In the AML cohort, the M:F ratio was 1.3:1 with a mean age of 50 years. t(15;17) was present in 7.6%, t(8;21) in 4.2%, inv(16) in 3.7%, t(9;22) in 2.2% and t(9;11) in 1.7% of cases. FLT3 mutation (ITD or TKD) was present in 25.2% of all cases and 30.1% of Cytogenetics-normal (CN) patients. Mutations of the NPM1 gene was present in 31.4% of AML cases and in 43.8% of CN patients. Double positive (NPM1+/FLT3+) cases accounted for 20% of NK patients. CEBPA and c-kit mutations were detected in 7.3% and 2.4% respectively. In the ALL cohort, the mean age was 37 years. B- and T-lymphoblastic leukemia constituted 84.6% and 15.4% of ALL cases and the M:F ratio was 1.2:1 and 2.86:1 respectively. B-ALL patients were positive for t(9;22) in 14.2%, t(4;11) in 5.4%, t(1;19) in 2.7% and t(12;21) in 1.4%. T-ALL patients were negative for translocations found in our ALL panel. A lower mean age was found in our adult leukemic Lebanese population as compared to the Western cases. Other interesting findings were the lower percentage of inv(16), lower incidence of TCF3-PBX1, and the mild increase in Philadelphia positivity in our AML cohort. In our ALL cohort, t(9;22) positivity was less than expected for adult lymphoblastic leukemia. Full molecular profiling by next generation sequencing is required for further classification of cases into prognostic categories. This study will be a baseline reference for future research and epidemiological data useful for transplant centers and oncologists both in Lebanon and the region.


Adult Leukemia Genetic Profile Lebanon 


Compliance with ethical standards

Conflict of interest

The authors do not have any conflict of interest to declare.

Ethical approval

The study was approved by the Institutional Review Board as a retrospective chart review and data collection with waiver of informed consent.


  1. 1.
    Yohe S (2015) Molecular genetic markers in acute myeloid leukemia. J Clin Med 4(3):460–478CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Swerdlow SH, Harris CE, Jaffe NL, Pileri ES, Stein SA, Thiele HJ (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn, vol 2Google Scholar
  3. 3.
    Arber DA et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dohner H et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Terwilliger T, Abdul-Hay M (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7(6):e577CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Leonard JP, Martin P, Roboz GJ (2017) Practical implications of the 2016 revision of the World Health Organization classification of lymphoid and myeloid neoplasms and acute leukemia. J Clin Oncol 35(23):2708–2715CrossRefPubMedGoogle Scholar
  7. 7.
    Jaffe ES, Barr PM, Smith SM (2017) Understanding the new WHO classification of lymphoid malignancies: why it’s important and how it will affect practice. Am Soc Clin Oncol Educ Book 37:535–546CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    El Halabi L et al (2015) Assessment of molecular markers in AML patients: a hospital-based study in Lebanon. Clin Lymphoma Myeloma Leuk 15 Suppl:S80–S84CrossRefPubMedGoogle Scholar
  9. 9.
    Smith A et al (2011) Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer 105(11):1684–1692CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Juliusson G et al (2012) Acute myeloid leukemia in the real world: why population-based registries are needed. Blood 119(17):3890–3899CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Abuhelwa Z et al (2017) Characteristics of de novo acute myeloid leukemia patients in Palestine: experience of An-Najah National University Hospital. Asian Pac J Cancer Prev 18(9):2459–2464PubMedPubMedCentralGoogle Scholar
  12. 12.
    Braham-Jmili N et al (2006) Haematological characteristics, FAB and WHO classification of 153 cases of myeloid acute leukaemia in Tunisia. Ann Biol Clin 64(5):457–465Google Scholar
  13. 13.
    Cheng Y et al (2009) Cytogenetic profile of de novo acute myeloid leukemia: a study based on 1432 patients in a single institution of China. Leukemia 23(10):1801–1806CrossRefPubMedGoogle Scholar
  14. 14.
    Bhutani M et al (2002) Lympho-hemopoietic malignancies in India. Med Oncol 19(3):141–150CrossRefPubMedGoogle Scholar
  15. 15.
    Hossain MS et al (2014) Diagnosed hematological malignancies in Bangladesh—a retrospective analysis of over 5000 cases from 10 specialized hospitals. BMC Cancer 14:438CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Elidrissi Errahhali M et al (2016) Distribution and features of hematological malignancies in Eastern Morocco: a retrospective multicenter study over 5 years. BMC Cancer 16:159CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gmidene A et al (2012) Cytogenetic profile of a large cohort of Tunisian de novo acute myeloid leukemia. Hematology 17(1):9–14CrossRefPubMedGoogle Scholar
  18. 18.
    Enjeti AK, Tien SL, Sivaswaren CR (2004) Cytogenetic abnormalities in de novo acute myeloid leukemia in adults: relation to morphology, age, sex and ethnicity—a single center study from Singapore. Hematol J 5(5):419–425CrossRefPubMedGoogle Scholar
  19. 19.
    Preiss BS et al (2003) Cytogenetic findings in adult de novo acute myeloid leukaemia. A population-based study of 303/337 patients. Br J Haematol 123(2):219–234CrossRefPubMedGoogle Scholar
  20. 20.
    Cai W et al (2015) Clinical and laboratory characteristics of 12 Ph/BCR-ABL positive acute myeloid leukemia patients. Zhonghua Xue Ye Xue Za Zhi 36(5):398–402PubMedGoogle Scholar
  21. 21.
    Keung YK et al (2004) Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leuk Res 28(6):579–586CrossRefPubMedGoogle Scholar
  22. 22.
    Soupir CP et al (2007) Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol 127(4):642–650CrossRefPubMedGoogle Scholar
  23. 23.
    Atfy M, Al NM, Azizi, Elnaggar AM (2011) Incidence of Philadelphia-chromosome in acute myelogenous leukemia and biphenotypic acute leukemia patients: and its role in their outcome. Leuk Res 35(10):1339–1344CrossRefPubMedGoogle Scholar
  24. 24.
    Falini B et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352(3):254–266CrossRefGoogle Scholar
  25. 25.
    Ley TJ et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074CrossRefPubMedGoogle Scholar
  26. 26.
    Thiede C et al (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107(10):4011–4020CrossRefPubMedGoogle Scholar
  27. 27.
    Bhattacharyya J et al (2018) Prevalence and clinical significance of FLT3 and NPM1 mutations in acute myeloid leukaemia patients of Assam, India. Indian J Hematol Blood Transfus 34(1):32–42CrossRefPubMedGoogle Scholar
  28. 28.
    Sazawal S et al (2017) NPM1 and FLT3 mutations in acute myeloid leukemia with normal karyotype: Indian perspective. Indian J Pathol Microbiol 60(3):355–359CrossRefPubMedGoogle Scholar
  29. 29.
    Sofan MA et al (2014) NPM1 gene mutation in Egyptian patients with cytogenetically normal acute myeloid leukemia. Clin Lab 60(11):1813–1822PubMedGoogle Scholar
  30. 30.
    Balatzenko G et al (2014) NPM1 gene type A mutation in bulgarian adults with acute myeloid leukemia: a single-institution study. Turk J Haematol 31(1):40–48CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Suzuki T et al (2005) Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 106(8):2854–2861CrossRefPubMedGoogle Scholar
  32. 32.
    Marshall RC et al (2014) Lower frequency of NPM1 and FLT3-ITD mutations in a South African adult de novo AML cohort. Int J Lab Hematol 36(6):656–664CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cuervo-Sierra J et al (2016) Prevalence and clinical significance of FLT3 mutation status in acute myeloid leukemia patients: a multicenter study. Arch Med Res 47(3):172–179CrossRefPubMedGoogle Scholar
  34. 34.
    Schnittger S et al (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100(1):59–66CrossRefPubMedGoogle Scholar
  35. 35.
    Swerdlow SH, ed (2008) World Health Organization classification of tumours, Lyon, 4th ednGoogle Scholar
  36. 36.
    Thiede C et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99(12):4326–4335CrossRefPubMedGoogle Scholar
  37. 37.
    Kottaridis PD et al (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98(6):1752–1759.CrossRefGoogle Scholar
  38. 38.
    Zaker F, Mohammadzadeh M, Mohammadi M (2010) Detection of KIT and FLT3 mutations in acute myeloid leukemia with different subtypes. Arch Iran Med 13(1):21–25PubMedGoogle Scholar
  39. 39.
    Shen Y et al (2011) Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood 118(20):5593–5603CrossRefPubMedGoogle Scholar
  40. 40.
    Gou H et al (2016) The prevalence and clinical profiles of FLT3-ITD, FLT3-TKD, NPM1, C-KIT, DNMT3A, and CEBPA mutations in a cohort of patients with de novo acute myeloid leukemia from southwest China. Tumour Biol 37(6):7357–7370CrossRefPubMedGoogle Scholar
  41. 41.
    Elyamany G et al (2014) Frequency and prognostic relevance of FLT3 mutations in Saudi acute myeloid leukemia patients. Adv Hematol 2014:141360PubMedPubMedCentralGoogle Scholar
  42. 42.
    Boddu P et al (2017) Co-occurrence of FLT3-TKD and NPM1 mutations defines a highly favorable prognostic AML group. Blood Adv 1(19):1546–1550CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yanada M et al (2005) Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 19(8):1345–1349CrossRefPubMedGoogle Scholar
  44. 44.
    Green CL et al (2010) Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol 28(16):2739–2747CrossRefGoogle Scholar
  45. 45.
    Pabst T et al (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27(3):263–270CrossRefPubMedGoogle Scholar
  46. 46.
    Marcucci G et al (2008) Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 26(31):5078–5087CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wouters BJ et al (2009) Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113(13):3088–3091CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Said SB et al (2016) Prevalence and prognostic impact of CEBPA gene mutation (simplified assay technique) in Egyptian acute myeloid leukemia patients with normal cytogenetics. Indian J Hematol Blood Transfus 32(4):405–411CrossRefPubMedGoogle Scholar
  49. 49.
    Awad MM et al (2013) CEBPA gene mutations in Egyptian acute myeloid leukemia patients: impact on prognosis. Hematology 18(2):61–68CrossRefPubMedGoogle Scholar
  50. 50.
    Paschka P et al (2006) Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 24(24):3904–3911CrossRefPubMedGoogle Scholar
  51. 51.
    Allen C et al (2013) The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia 27(9):1891–1901CrossRefGoogle Scholar
  52. 52.
    Harada Y et al (2018) Prognostic analysis according to the 2017 ELN risk stratification by genetics in adult acute myeloid leukemia patients treated in the Japan Adult Leukemia Study Group (JALSG) AML201 study. Leuk Res 66:20–27CrossRefPubMedGoogle Scholar
  53. 53.
    Mrózek K et al (2012) Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol 30(36):4515–4523CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hemmati PG et al (2017) Predictive significance of the European LeukemiaNet classification of genetic aberrations in patients with acute myeloid leukaemia undergoing allogeneic stem cell transplantation. Eur J Haematol 98(2):160–168CrossRefPubMedGoogle Scholar
  55. 55.
    Bullinger L, Dohner K, Dohner H (2017) Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol 35(9):934–946CrossRefPubMedGoogle Scholar
  56. 56.
    Wang M et al (2017) Validation of risk stratification models in acute myeloid leukemia using sequencing-based molecular profiling. Leukemia 31(10):2029–2036CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jabbour E et al (2015) New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer 121(15):2517–2528CrossRefPubMedGoogle Scholar
  58. 58.
    Paul S, Kantarjian H, Jabbour EJ (2016) Adult acute lymphoblastic leukemia. Mayo Clin Proc 91(11):1645–1666CrossRefPubMedGoogle Scholar
  59. 59.
    Lahjouji A et al (2015) The immunophenotype of adult T acute lymphoblastic leukemia in Morocco. Exp Oncol 37(1):64–69CrossRefPubMedGoogle Scholar
  60. 60.
    Hassan IB et al (2009) Acute leukemia among the adult population of United Arab Emirates: an epidemiological study. Leuk Lymphoma 50(7):1138–1147CrossRefPubMedGoogle Scholar
  61. 61.
    Charafeddine KM et al (2009) Long-term outcome of adult acute lymphoblastic leukemia in Lebanon: a single institution experience from the American University of Beirut. Hematol Oncol Stem Cell Ther 2(2):333–339CrossRefPubMedGoogle Scholar
  62. 62.
    Abbasi S, Maleha F, Shobaki M (2013) Acute lymphoblastic leukemia experience: epidemiology and outcome of two different regimens. Mediterr J Hematol Infect Dis 5(1):e2013024CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Samra MA et al (2013) The prognostic significance of minimal residual disease in adult Egyptian patients with precursor acute lymphoblastic leukemia. J Egypt Natl Canc Inst 25(3):135–142CrossRefPubMedGoogle Scholar
  64. 64.
    Alvarnas JC et al (2012) Acute lymphoblastic leukemia. J Natl Compr Cancer Netw 10(7):858–914CrossRefGoogle Scholar
  65. 65.
    Gmidene A et al (2008) Cytogenetic analysis of 298 newly diagnosed cases of acute lymphoblastic leukaemia in Tunisia. Hematol Oncol 26(2):91–97CrossRefPubMedGoogle Scholar
  66. 66.
    Mahmoud LA et al (2006) A study for evaluation of different diagnostic approaches in acute leukemia in Egypt. Hematology 11(2):87–95CrossRefPubMedGoogle Scholar
  67. 67.
    Mullighan CG (2012) The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2012:389–396PubMedGoogle Scholar
  68. 68.
    Wolach O, Amitai I, DeAngelo DJ (2017) Current challenges and opportunities in treating adult patients with Philadelphia-negative acute lymphoblastic leukaemia. Br J Haematol 179(5):705–723CrossRefPubMedGoogle Scholar
  69. 69.
    Thomas X et al (2004) Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol 22(20):4075–4086CrossRefPubMedGoogle Scholar
  70. 70.
    Maury S et al (2016) Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med 375(11):1044–1053CrossRefPubMedGoogle Scholar
  71. 71.
    Gokbuget N (2016) Treatment of older patients with acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program 2016(1):573–579CrossRefGoogle Scholar
  72. 72.
    Liu YF et al (2016) Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine 8:173–183CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Molecular Diagnostics Laboratory, Department of Pathology and Laboratory MedicineAmerican University of Beirut Medical CenterBeirutLebanon
  2. 2.Department of Internal Medicine, Basile Cancer CenterAmerican University of Beirut Medical CenterBeirutLebanon

Personalised recommendations