Molecular Biology Reports

, Volume 46, Issue 2, pp 1931–1940 | Cite as

Characterization of aneuploidy in interspecific hybrid between Urochloa ruziziensis (R. Germ. & Evrard) Crins and Urochloa decumbens (Stapf) R. D. Webster

  • Isabella de Campos Moraes
  • Gabriel de Campos Rume
  • Fausto Souza Sobrinho
  • Vânia Helena TechioEmail author
Original Article


The aim of the study was to characterize the type of aneuploidy present in the hybrid Urochloa ruziziensis × Urochloa decumbens and to confirm the origin of the additional chromosomes through comparative analysis of the hybrid and parental karyotypes. C and CMA banding techniques were used for chromosome differentiation. The parental genotypes showed 36 chromosomes. The hybrid presented plants with 36 + 2 chromosomes and plants with 36 + 1 chromosomes. Urochloa ruziziensis (4x) presented four chromosomes with CMA and C bands co-located in the terminal position. In U. decumbens, four chromosomes presented terminal CMA bands, eight chromosomes were distinguished by C banding with pericentromeric and terminal bands, one chromosome with terminal band at both ends and one chromosome presented one C terminal band. For the hybrid, CMA bands were found on five chromosomes and C bands on seven chromosomes, all in terminal position. Aneuploidy was identified in pairs 3′ and 4′ in the hybrid plants with 36 + 2 chromosomes, characterizing it as double trisomy. The karyotype of hybrid plants with 36 + 1 chromosomes indicated elimination of the additional chromosome identified in pair 4′ and maintenance of trisomy on pair 3′. The comparative analysis of karyotypes indicates that the additional chromosomes that characterize the trisomy were inherited from U. ruziziensis (artificial tetraploid).


Brachiaria Trisomy Karyotype Chromosome banding 



The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Fundação de Amparo à pesquisa de Minas Gerais – FAPEMIG e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES for the financial support to research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Renvoize SA, Clayton WD, Kabuye CHS (1996) Morphology, taxonomy and natural distribution of Brachiaria (Trin.) Griseb. In: Miles JW, Maass BL, Valle CB (eds) Brachiaria: biology, agronomy, and improvement. CIAT, Cali, pp 1–15Google Scholar
  2. 2.
    Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since].” will do.
  3. 3.
    Karia CT, Duarte JB, Araújo ACG (2006) Desenvolvimento de Cultivares do gênero Brachiaria (trin.) Griseb no Brasil. Embrapa cerrados, PlanaltinaGoogle Scholar
  4. 4.
    Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. Allen & Unwin, LondonGoogle Scholar
  5. 5.
    Christopher J, Abraham A (1976) Studies on the cytology and phylogeny of South Indian grasses. Cytologia 41:621–637. CrossRefGoogle Scholar
  6. 6.
    Basappa GP, Muniyamma M, Chinnapa CC (1987) An investigation of chromosome numbers in the genus Brachiaria (Poaceae: Paniceae) in relation to morphology and taxonomy. Botany 65:2297–2309. CrossRefGoogle Scholar
  7. 7.
    Risso-Pascotto C, Pagliarini MS, Valle CBD (2006) A new basic chromosome number for the genus Brachiaria (Trin.) Griseb (Poaceae: Panicoideae: Paniceae). Genet Resour Crop Evol 53:7–10. CrossRefGoogle Scholar
  8. 8.
    Valle CB, Pagliarini MS (2009) Biology, cytogenetics, and breeding of Brachiaria. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement series, 3v. CRC Press, Boca Raton, pp 103–151CrossRefGoogle Scholar
  9. 9.
    Penteado MIO, Santos ACM, Rodrigues IF et al (2000) Determinação de ploidia e avaliação da quantidade de DNA total em diferentes espécies do gênero Brachiaria. Embrapa Gado de Corte, Campo GrandeGoogle Scholar
  10. 10.
    Valle CB, Savidan Y (1996) Genetics, cytogenetics and reproductive biology of Brachiaria. In: Miles JW, Maass BL, Valle CB (eds) Brachiaria: biology, agronomy, and improvement. CIAT, Cali, pp 147–163Google Scholar
  11. 11.
    Carrillo ARQ, Quiroz JFE, Nieto CRM, Jiménez LM (2010) Apomixis importance for tropical forage grass selection and breeding. Rev Rev Mex Cienc Pecu 1:25–42Google Scholar
  12. 12.
    Souza Sobrinho F (2005) Melhoramento de forrageiras no Brasil. In: Evangelista AR (ed) Forragicultura e pastagens: temas em evidência. Editora UFLA, Lavras, pp 65–120Google Scholar
  13. 13.
    Pereira AV, Valle CB, Ferreira RP et al (2001) Melhoramento de forrageiras tropicais. In: Nass LL et al (eds) Recursos genéticos e melhoramento de plantas. Fundação Mato Grosso, Cuiabá, pp 549–602Google Scholar
  14. 14.
    Ishigaki G, Gondo T, Suenaga K, Akashi R (2009) Induction of tetraploid ruzigrass (Brachiaria ruziziensis) plants by colchicine treatment of in vitro multiple-shoot clumps and seedlings. Grassl Sci 55:164–170. CrossRefGoogle Scholar
  15. 15.
    Timbó ALO, Souza PNC, Pereira RC et al (2014) Obtaining tetraploid plants of ruzigrass (Brachiaria ruziziensis). R Bras Zootec 43(3):127–131. CrossRefGoogle Scholar
  16. 16.
    Paula CMP de, Souza Sobrinho F, Techio VH (2017) Genomic constitution and relationship in Urochloa (Poaceae) species and hybrids. Crop Sci 57:2605–2616. CrossRefGoogle Scholar
  17. 17.
    Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041. CrossRefGoogle Scholar
  18. 18.
    Carvalho CR, Saraiva LS (1993) A new heterochromatin banding pattern revealed by modified HKG banding technique in maize chromosomes. Heredity 70:515–519. CrossRefGoogle Scholar
  19. 19.
    Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324. CrossRefPubMedGoogle Scholar
  20. 20.
    Schwazacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297. CrossRefGoogle Scholar
  21. 21.
    Altınordu F, Peruzzi L, Yu Y et al (2016) A tool for the analysis of chromosomes: KaryoType. Taxon 65:586–592. CrossRefGoogle Scholar
  22. 22.
    Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold Publishers Ltd, LondonGoogle Scholar
  23. 23.
    Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. CrossRefGoogle Scholar
  24. 24.
    Heslop-Harrison JSP, Schwarzacher T (2011) Organization of the plant genome in chromosomes. Plant J 66:18–33. CrossRefPubMedGoogle Scholar
  25. 25.
    Nani TF, Pereira DL, Sobrinho FS, Techio VH (2016) Physical map of repetitive DNA sites in Brachiaria spp.: intravarietal and interspecific polymorphisms. Crop Sci 56:1769. CrossRefGoogle Scholar
  26. 26.
    Valle CB, Singh RJ, Miller DA (1987) Pachytene chromosomes of Brachiaria ruziziensis Germain et Evrard. Plant Breed 78:75–78. CrossRefGoogle Scholar
  27. 27.
    Bernini C, Marin-Morales MA (2001) Karyotype analysis in Brachiaria (Poaceae) species. Cytobios 104:57–171Google Scholar
  28. 28.
    Cerbah M, Kevei Z, Siljak-Yakovlev S et al (1999) FISH chromosome mapping allowing karyotype analysis in Medicago truncatula lines Jemalong J5 and R-108-1. Mol Plant Microbe Interact 12:947–950. CrossRefGoogle Scholar
  29. 29.
    Rosato M, Castro M, Rossello JA (2008) Relationships of the woody Medicago species (section Dendrotelis) assessed by molecular cytogenetic analyses. Ann Bot 102:15–22. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pedrosa-Harand A, Almeida CCS de, Mosiolek M et al (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112(5):924–933. CrossRefPubMedGoogle Scholar
  31. 31.
    Planchais S (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83. CrossRefPubMedGoogle Scholar
  32. 32.
    Ekong NJ, Akpan GA, Udo IJ (2014) Comparative effects of colchicine, 8-hydroxyquinoline and paradichlorobenzene on arm ratio of mitotic chromosomes of Allium cepa L. Int J Mod Alt Med Res 2:21–26Google Scholar
  33. 33.
    Reis GB dos, Ishii T, Fuchs J et al (2016) Tissue-specific genome instability in synthetic interspecific hybrids of Pennisetum purpureum (Napier grass) and Pennisetum glaucum (pearl millet) is caused by micronucleation. Chromosome Res 24:285–297. CrossRefPubMedGoogle Scholar
  34. 34.
    Jones R, Hegarty M (2009) Order out of chaos in the hybrid plant nucleus. Cytogenet Genome Res 126:376–389. CrossRefPubMedGoogle Scholar
  35. 35.
    Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846. CrossRefPubMedGoogle Scholar
  36. 36.
    Lee EA, Darrah LL, Coe EH (1996) Dosage effects on morphological and quantitative traits in maize aneuploids. Genome 39:898–908. CrossRefPubMedGoogle Scholar
  37. 37.
    Dong Y, Tsuzuki H, Terao H (2001) Trisomic genetic analysis of aroma in three Japanese native rice varieties (Oryza sativa L.). Euphytica 117:191–196. CrossRefGoogle Scholar
  38. 38.
    Wang R, Gao J, Guan Z, Mao L (2007) Chromosome location and linkage analysis of a few agronomical important traits in foxtail millet. Acta Agron Sin 33:9–14Google Scholar
  39. 39.
    Humphreys MW, Canter PJ, Thomas HM (2003) Advances in introgression technologies for precision breeding within the Lolium—Festuca complex. Ann appl Biol 143:1–10. CrossRefGoogle Scholar
  40. 40.
    Molnár-Láng M, Ceoloni C, Dolezel J (2015) Alien introgression in wheat: cytogenetics, molecular biology, and genomics. Springer, ChamCrossRefGoogle Scholar
  41. 41.
    Silva GS, Souza MM, Melo CAF et al (2018) Identification and characterization of karyotype in Passiflora hybrids using FISH and GISH. BMC Genet 19:26. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Paula C, Figueiredo K, Sobrinho FS et al (2016) Microsporogenesis analysis validates the use of artificially tetraploidized Brachiaria ruziziensis in breeding programs. Genet Mol Res. CrossRefPubMedGoogle Scholar
  43. 43.
    Sybenga J (1992) Cytogenetics in plant breeding. Springer-Verlag, New YorkCrossRefGoogle Scholar
  44. 44.
    Appels R, Morris R, Gill BS, May CE (1998) Chromosome biology. Springer Science, New YorkCrossRefGoogle Scholar
  45. 45.
    Singh RJ (2017) Plant cytogenetics, 3rd edn. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  46. 46.
    Zoshchuk NV, Badaeva ED, Zelenin AV (2003) History of mordern chromosomal analysis. Diferencial staining of plant chromosomes. Russ J Dev Biol 34:1–13. CrossRefGoogle Scholar
  47. 47.
    Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125. CrossRefPubMedGoogle Scholar
  48. 48.
    Fukui K, Nakayama S (1996) Plant chromosomes: laboratory methods. CRC Press, Boca RatonGoogle Scholar
  49. 49.
    Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biology/DBI-Plant Cytogenetics LaboratoryFederal University of Lavras (UFLA)LavrasBrazil
  2. 2.Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Embrapa Gado de LeiteJuiz de ForaBrazil

Personalised recommendations