Molecular Biology Reports

, Volume 46, Issue 2, pp 1675–1682 | Cite as

Synthesis and preclinical investigation of 99mTc-p-SCN-Bzl-DTPA-cetuximab for targeting EGFR using head and neck squamous cell carcinoma (HNSCC) xenografts

  • Syed Qaiser ShahEmail author
  • Gul-e-Raana
Original Article


To assess the preclinical potential of technetium-99m labelled conjugated para-isothiocyanato-benzyl diethylene triamine penta-acetic acid cetuximab (99mTc-p-SCN-Bzl-DTPA cetuximab) for imaging EGFR in HNSCC mice and rabbits xenografts. Cetuximab, a chimeric monoclonal antibody targeting EGFR, was conjugated with p-SCN-Bzl-DTPA followed by labelling with 99mTc. The labelled conjugate was evaluated for in vitro stability in L−cysteine at 37 °C. The 99mTc-p-SCN-Bzl-DTPA cetuximab was also investigated for immunoreactivity, internationalization kinetics, dose escalation (up to 300 µg) and biodistribution in HNSCC mice xenograft. The suitability of labelled moiety as a specific EGFR radio-tracer was assessed in HNSCC rabbit xenograft. 99mTc-p-SCN-Bzl-DTPA cetuximab exhibited more than 98% radiochemical purity at room temperature. In excess L−cysteine, it showed a stable behaviour at 37 °C up to 4 h p.l. The labelled conjugate was internalized in vitro in FaDu tumor cells up to 19.55%. Significantly higher uptake in tumor (at 10 µg; 34.75 ± 0.38% ID/g: pi) was seen in HNSCC mice xenograft with dose escalation assay from 1 to 300 µg/mouse. Blocking of EGFR with excess cetuximab consequently decreased the uptake of tumor up to 6.80 ± 1.25%. SPECT images of rabbit xenograft confirmed increase in tumor to background ratio after 4 h pi and validated its potential in preclinical trial as a specific FaDu tumor tracer. Our in vitro and in vivo preclinical findings indicate that the 99mTc-p-SCN-Bzl-DTPA cetuximab prepared at optimal dose of cetuximab could become a useful tool for EGFR imaging in HNSCC using SPECT.


99mTc-p-SCN-Bzl-DTPA-cetuximab EGFR HNSCC xenograft 



We thank the Higher Education Commission (HEC), Islamabad, Pakistan for providing all sorts of financial assistance under National Research Program for Universities. The instant study is part of the HEC funded research grant No. 3122.

Authors’ contributions

GR performed conjugation of cetuximab with p-SCN-Bzl-DTPA, labeling with radionuclide, in vitro studies and biodistribution in animal model mice. SQS performed the imaging studies using rabbit xenograft. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

No conflict of interests.

Ethics approval and consent to participate

No human was involved in this study. Experiments on mice and rabbits models were executed in compliance with Nuclear Medicine Research Laboratory (NMRL) and approval of ethics committee at Institute of Chemical Sciences (ICS), University of Peshawar.


  1. 1.
    Chong CR, Janne PA (2013) The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 19:1389–1400CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Scaltriti M, Baselga J (2006) The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12:5268–5272CrossRefPubMedGoogle Scholar
  3. 3.
    Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37:S9–S15CrossRefPubMedGoogle Scholar
  4. 4.
    Schlomm T, Kirstein P, Iwers L et al (2007) Clinical significance of epidermal growth factor receptor protein overexpression and gene copy number gains in prostate cancer. Clin Cancer Res 13:6579–6584CrossRefPubMedGoogle Scholar
  5. 5.
    Parra HS, Cavina R, Latteri F et al (2004) Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib (‘Iressa’, ZD1839) in non-small-cell lung cancer. Br J Cancer 91:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zlobec I, Vuong T, Hayashi S et al (2007) A simple and reproducible scoring system for EGFR in colorectal cancer: application to prognosis and prediction of response to preoperative brachytherapy. Br J Cancer 96:793–800CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Garousi J, Andersson KG, Mitran B et al (2016) PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules. Int J Oncol 48:1325–1332CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC et al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget. 2015;6:30384–30393PubMedPubMedCentralGoogle Scholar
  9. 9.
    Nayak TK, Regino CA, Wong KJ et al (2010) PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A’’-DTPA-cetuximab. Eur J Nucl Med Mol Imaging 37:1368–1376CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Eiblmaier M, Meyer LA, Watson MA, Fracasso PM, Pike LJ, Anderson CJ (2008) Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J Nucl Med 49:1472–1479CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yun M, Kim DY, Lee JJ et al (2017) A high-affinity repebody for molecular imaging of EGFRexpressing malignant tumors. Theranostics 7:2620–2633CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hwang DE, Ryou JH, Oh JR, Han JW, Park TK, Kim HS (2016) Anti-human VEGF repebody effectively suppresses choroidal neovascularization and vascular leakage. PLoS ONE 11:e0152522CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee JJ, Choi HJ, Yun M et al (2015) Enzymatic prenylation and oxime ligation for the synthesis of stable and homogeneous protein-drug conjugates for targeted therapy. Angew Chem Int Ed Engl 54:12020–12024CrossRefPubMedGoogle Scholar
  14. 14.
    Lee JJ, Kim HJ, Yang C-S et al (2014) A high-affinity protein binder that blocks the IL-6/STAT3 signaling pathway effectively suppresses non–small cell lung cancer. Mol Ther 22:1254-CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim JY, Park H, Lee JC et al (2009) A simple Cu-64 production and its application of Cu-64 ATSM. Appl Radiat Isot 67:1190–1194CrossRefPubMedGoogle Scholar
  16. 16.
    Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056PubMedGoogle Scholar
  17. 17.
    Yang CH, Chou HC, Fu YN et al (2015) EGFR over-expression in non-small cell lung cancers harboring EGFR mutations is associated with marked down-regulation of CD82. Biochim Biophys Acta 1852:1540–1549CrossRefPubMedGoogle Scholar
  18. 18.
    Cross DA, Ashton SE, Ghiorghiu S et al (2014) AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4:1046–1061CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Petrulli JR, Sullivan JM, Zheng MQ et al (2013) Quantitative analysis of [11C]-erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain. Neoplasia 15:1347–1353CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cooper MS, Ma MT, Sunassee K et al (2012) Comparison of 64Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjug Chem 23:1029–1039CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schechter NR, Wendt RE, Yang DJ et al (2004) Radiation dosimetry of 99mTc-labeled C225 in patients with squamous cell carcinoma of the head and neck. J Nucl Med 45:1683–1687PubMedGoogle Scholar
  22. 22.
    Wen X, Wu QP, Ke S et al (2001) Conjugation with (111)InDTPA-poly(ethylene glycol) improves imaging of anti-EGF receptor antibody C225. J Nucl Med 42:1530–1537PubMedGoogle Scholar
  23. 23.
    Li WP, Meyer LA, Capretto DA et al (2008) Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm 23:158–171CrossRefGoogle Scholar
  24. 24.
    Perk LR, Visser GW, Vosjan MJ et al (2005) (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 46:1898–1906PubMedGoogle Scholar
  25. 25.
    Nayak TK, Regino CA, Wong KJ et al (2010) PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″- DTPA-cetuximab. Eur J Nucl Med Mol Imaging 37:1368–1376CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shah SQ, Gul-E-Raana, Uddin G (2018) Imaging prostate cancer (PCa) with [99mTc(CO)3finasteride dithiocarbamate. J Labelled Comp Radiopharm 61:550–556CrossRefPubMedGoogle Scholar
  27. 27.
    Brady ED, Chong HS, Milenic DE, Brechbiel MW (2004) Development of a spectroscopic assay for bifunctional ligand-protein conjugates based on copper. Nucl Med Boil 31:795–802CrossRefGoogle Scholar
  28. 28.
    Shah SQ, Mahmood S (2018) Evaluation of 99mTc-labeled bevacizumab-N-HYNIC conjugate in human ovarian tumor xenografts. Cancer Biother Radiopharm 33:96–102CrossRefGoogle Scholar
  29. 29.
    Koenig JA, Kaur R, Dodgeon I, Edwardson JM, Humphrey PP (1998) Fates of endocytosed somatostatin sst2 receptors and associated agonists. Biochem J 336:291–298CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cai W, Chen K, He L, Cao Q, Koong A, Chen X (2007) Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858CrossRefPubMedGoogle Scholar
  31. 31.
    Niu G, Sun X, Cao Q et al (2010) Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin Cancer Res 16:2095–2105CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Goldenberg A, Masui H, Divgi C et al (1989) Imaging of human tumor xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst 81:1616–1625CrossRefPubMedGoogle Scholar
  33. 33.
    Niu G, Li Z, Xie J, Le QT, Chen X (2009) PET of EGFR antibody distribution in head andneck squamous cell carcinoma models. J Nucl Med 50:1116–1123CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kareem H, Sandstrom K, Elia R et al (2010) Blocking EGFR in the liver improves the tumor-to-liver uptake ratio of radiolabeled EGF. Tumor Biol 31:79–87CrossRefGoogle Scholar
  35. 35.
    Divgi CR, Welt S, Kris M et al (1991) Phase I and imaging trial of indium 111-labeledanti-epidermal growth factor receptor monoclonal antibody 225 in patients withsquamous cell lung carcinoma. J Natl Cancer Inst 83:97–104CrossRefPubMedGoogle Scholar
  36. 36.
    Milenic DE, Wong KJ, Baidoo KE et al (2008) Cetuximab: preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm 23:619–631CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Chemical SciencesUniversity of PeshawarPeshawarPakistan

Personalised recommendations