Molecular Biology Reports

, Volume 46, Issue 2, pp 1661–1666 | Cite as

Serum miR-30c-5p is a potential biomarker for multiple system atrophy

  • Annamaria VallelungaEmail author
  • Tommaso Iannitti
  • Giovanna Dati
  • Sabrina Capece
  • Marco Maugeri
  • Ersilia Tocci
  • Marina Picillo
  • Giampiero Volpe
  • Autilia Cozzolino
  • Massimo Squillante
  • Giulio Cicarelli
  • Paolo Barone
  • Maria Teresa Pellecchia
Original Article


Multiple system atrophy (MSA) is a neurodegenerative disease that belongs to the α synucleinopathies. Clinically, there is an overlap between MSA and Parkinson’s disease (PD), especially at the early disease stage. However, these two pathologies differ in terms of disease progression. Currently, no biomarker exists to differentiate MSA from PD. MicroRNAs are non-coding RNAs implicated in gene expression regulation. MiRNAs modulate cellular activity and they control a range of physiological and pathological functions. miRNAs are found in biofluids, such as blood, serum, plasma, saliva, and cerebrospinal fluid. Many groups, including ours, found that circulating miRNAs are differently expressed in blood, plasma, serum and cerebrospinal fluid of PD and MSA patients. In the present study, our primary aim was to determine if serum mir-30-5p and mir-148b-5p can be used as biomarkers for early diagnosis of PD and/or MSA. Our secondary goal was to determine if serum levels of those miRNAs can be correlated with the patients’ clinical profile. Using quantitative PCR (qPCR), we evaluated expression levels of miR-30c-5p and miR148b-5p in serum samples from PD (n = 56), MSA (n = 49), and healthy control (n = 50) subjects. We have found that miR-30c-5p is significantly upregulated in MSA if compared with PD and healthy control subjects. Moreover, serum miR-30c-5p levels correlate with disease duration in both MSA and PD. No significant difference was found in miR-148b-5p among MSA, PD and healthy control subjects. Our results suggest a possible role of serum miR-30-5p as a biomarker for diagnosis and progression of MSA.


Parkinson’s disease MiRNAs Multiple system atrophy MiR-30c-5p Biomarker Synucleinopathies 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no known conflicts of interest in relation to this article.


  1. 1.
    Brai E et al (2016) Notch1 hallmarks fibrillary depositions in sporadic Alzheimer’s disease. Acta Neuropathol Commun 4(1):64CrossRefGoogle Scholar
  2. 2.
    Cardo LF et al (2013) Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 260(5):1420–1422CrossRefGoogle Scholar
  3. 3.
    Choubey V et al (2014) BECN1 is involved in the initiation of mitophagy: it facilitates PARK2 translocation to mitochondria. Autophagy 10(6):1105–1119CrossRefGoogle Scholar
  4. 4.
    De Smaele E, Ferretti E, Gulino A (2010) MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res 1338:100–111CrossRefGoogle Scholar
  5. 5.
    Desplats P et al (2011) α-Synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286(11):9031–9037CrossRefGoogle Scholar
  6. 6.
    Galvin JE, Lee VM, Trojanowski JQ (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58:186–190CrossRefGoogle Scholar
  7. 7.
    Grasso M, Piscopo P, Confaloni A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 19(5):6891–6910CrossRefGoogle Scholar
  8. 8.
    Hossein-nezhad A et al (2016) Transcriptomic profiling of extracellular RNAs present in cerebrospinal fluid identifies differentially expressed transcripts in Parkinson’s disease. J Parkinson’s Dis 6(1):109–117CrossRefGoogle Scholar
  9. 9.
    Jankovic J, Tolosa E (eds) (1998) Parkinson’s disease movement disorders, vol 8, pp 159–171Google Scholar
  10. 10.
    Khoo SK et al (2012) Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinson’s Dis 2(4):321–331. 12Google Scholar
  11. 11.
    Kume K et al (2018) Serum microRNA expression profiling in patients with multiple system atrophy. Mol Med Rep 17(1):852–860PubMedGoogle Scholar
  12. 12.
    Laurens B et al (2015) Fluid biomarkers in multiple system atrophy: a review of the MSA biomarker initiative. Neurobiol Dis 80:29–41CrossRefGoogle Scholar
  13. 13.
    Marques TM et al (2017) MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Mol Neurobiol 54(10):7736–7745CrossRefGoogle Scholar
  14. 14.
    Merwe et al (2015) Evidence for a common biological pathway linking three Parkinson’s disease causing genes: parkin, PINK1 and DJ1. Eur J Neurosci 41(9):1113–1125CrossRefGoogle Scholar
  15. 15.
    Michiorri S et al (2010) The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ 17(6):962–974CrossRefGoogle Scholar
  16. 16.
    Nadim WD et al (2017) MicroRNAs in neurocognitive dysfunctions: new molecular targets for pharmacological treatments? Curr Neuropharmacol 15(2):260–275CrossRefGoogle Scholar
  17. 17.
    Pickford F et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 118(6):2190PubMedPubMedCentralGoogle Scholar
  18. 18.
    Quévillon Huberdeau M, Simard MJ (2018) A guide to microRNA-mediated gene silencing. FEBS J.
  19. 19.
    Serpente M et al (2015) Profiling of ubiquitination pathway genes in peripheral cells from patients with frontotemporal dementia due to C9ORF72 and GRN mutations. Int J Mol Sci 16(1):1385–1394CrossRefGoogle Scholar
  20. 20.
    Son JH et al (2012) Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 44(2):89–98CrossRefGoogle Scholar
  21. 21.
    Song C et al (2011) Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology 32(5):586–595CrossRefGoogle Scholar
  22. 22.
    Vallelunga A et al (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and multiple system atrophy. Front Cell Neurosci 8:156CrossRefGoogle Scholar
  23. 23.
    Wang JD et al (2015) A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonistinduced autophagy activation. Autophagy 11(11):2057–2073CrossRefGoogle Scholar
  24. 24.
    Wenning GK et al (1994) Clinical features and natural history of multiple system atrophy: an analysis of 100 cases. Brain 117:835–845CrossRefGoogle Scholar
  25. 25.
    Wu Q et al (2017) Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of Parkinson’s disease. Mol Neurobiol 54(9):6970–6983CrossRefGoogle Scholar
  26. 26.
    Yoon JH et al (2017) Parkin mediates neuroprotection through activation of Notch1 signaling. Neuroreport 28(4):181–186Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Annamaria Vallelunga
    • 1
    Email author
  • Tommaso Iannitti
    • 2
  • Giovanna Dati
    • 1
  • Sabrina Capece
    • 1
  • Marco Maugeri
    • 3
  • Ersilia Tocci
    • 4
  • Marina Picillo
    • 1
  • Giampiero Volpe
    • 5
  • Autilia Cozzolino
    • 6
  • Massimo Squillante
    • 5
  • Giulio Cicarelli
    • 6
  • Paolo Barone
    • 1
  • Maria Teresa Pellecchia
    • 1
  1. 1.Neuroscience Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
  2. 2.KWS BioTestPortisheadUK
  3. 3.Department of Rheumatology and Inflammation Research, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  4. 4.Laboratorio Analisi PO Serra San BrunoASP Vibo ValentiaVibo ValentiaItaly
  5. 5.Clinica NeurologicaAOU San Giovanni di Dio e Ruggi d’AragonaSalernoItaly
  6. 6.AO San Giuseppe MoscatiAvellinoItaly

Personalised recommendations