Molecular Biology Reports

, Volume 46, Issue 2, pp 1593–1601 | Cite as

Construction of a synthetic protein using PCR with a high essential amino acid content for nutritional purposes

  • Ma. I. Sánchez-Crisóstomo
  • M. I. Rojo-López
  • A. Sharma
  • J. C. Cancino-Diaz
  • H. Jaimes-Díaz
  • J. A. Ariza-Ortega
  • E. Madrigal-Santillán
  • G. Betanzos-CabreraEmail author
Original Article


Ovalbumin is considered a protein of high nutritional value because it contains essential amino acids and is highly digestible. Therefore, it has a high biological value. Currently, the high food demand requires worldwide attention because food production is insufficient. Therefore, other alternatives are necessary to satisfy food demands, such as protein engineering. In this work, a protein with a high essential amino acid content similar to ovalbumin was synthesized by protein engineering, expressed, and digested in vitro. The assembly and sequential overlap extension PCR strategy was used to synthesize a 345-bp gene that encodes a high essential amino acid content protein (HEAAP). The 345-bp product was cloned into the vector pBAD TOPO®, and expressed in Escherichia coli BL21. PCR reactions and sequencing demonstrated the presence, orientation, and correct sequence of the insert. HEAAP expression was induced by l-arabinose and then purified using Ni–NTA affinity chromatography. The expression in E. coli was low and barely detected by Western blot assay. The in vitro multienzyme digestibility of HEAAP was around 79%, which suggests that the protein is potentially nutritious. Virtual analysis classifies the protein as unstable and hydrophilic, with a half-life in E. coli of 10 h. The recombinant HEAAP was successfully synthesized, but it is necessary to improve the digestibility and to optimize expression including selecting other expression models.


Protein Cloning Expression Digestibility PCR High-value nutritional 



Financial support for this work was provided by CONACYT Problemas Nacionales PDCPN2013-01 and PAI 2015 UAEH.SALUD-2010-01-142035. Juan Carlos Cancino-Díaz is fellow from COFAA-IPN, EDI-IPN and SNI-CONACYT. We also want to thank Fatima A Navarro Gress for its assistance in editing this work.

Conflict of interest

The authors declare they have no conflict of interests regarding the publication of this paper.


  1. 1.
    Garnett T (2014) Three perspectives on sustainable food security: efficiency, demand restraint, food system transformation. What role for life cycle assessment? J Clean Prod 73:10–18CrossRefGoogle Scholar
  2. 2.
    Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc Lond B 369:20120273CrossRefGoogle Scholar
  3. 3.
    Tian J, Bryksa BC, Yada RY (2016) Feeding the world into the future–food and nutrition security: the role of food science and technology. Front Life Sci 9:155–166CrossRefGoogle Scholar
  4. 4.
    Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291CrossRefGoogle Scholar
  5. 5.
    Rasul G, Sharma B (2016) The nexus approach to water–energy–food security: an option for adaptation to climate change. Clim Policy 16:682–702CrossRefGoogle Scholar
  6. 6.
    Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341:508–513CrossRefPubMedGoogle Scholar
  7. 7.
    Kapoor S, Rafiq A, Sharma S (2017) Protein engineering and its applications in food industry. Crit Rev Food Sci Nutr 57:2321–2329CrossRefPubMedGoogle Scholar
  8. 8.
    Ortiz JA, Ruiz AT, Morales-Ramos JA, Thomas M, Rojas MG, Tomberlin JK, Jullien RL (2016) Insect mass production technologies. In: Dossey AT, Morales-ramos JA, Guadalupe Rojas M (ed) Insects as sustainable food ingredients. Academic Press, Cambridge, pp 153–201CrossRefGoogle Scholar
  9. 9.
    Van Huis A (2013) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58:563–583CrossRefPubMedGoogle Scholar
  10. 10.
    Dillon PJ, Rosen CA (1993) Use of polymerase chain reaction for the rapid construction of synthetic genes. Methods Mol Biol 15:263–268PubMedGoogle Scholar
  11. 11.
    Xiong AS, Peng RH, Zhuang J, Gao F, Li Y, Cheng ZM, Yao QH (2008) Chemical gene synthesis: strategies, softwares, error corrections, and applications. FEMS Microbiol Rev 32:522–540CrossRefPubMedGoogle Scholar
  12. 12.
    Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res 32:e98–e98CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ (2009) Synthetic gene networks that count. Science 324:1199–1202CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang TJ, Zhang F, Richards JB, Kestenbaum B, Van Meurs JB, Berry D, Koller DL (2010) Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376:180–188CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Withers-Martinez C, Carpenter EP, Hackett F, Ely B, Sajid M, Grainger M, Blackman MJ (1999) PCR-based gene synthesis as an efficient approach for expression of the A+T-rich malaria genome. Protein Eng Des Sel 12:1113–1120CrossRefGoogle Scholar
  16. 16.
    Galili G, Amir R, Fernie AR (2016) The regulation of essential amino acid synthesis and accumulation in plants. Annu Rev Plant Biol 67:153–178CrossRefPubMedGoogle Scholar
  17. 17.
    Huang S, Wang LM, Sivendiran T, Bohrer BM (2017) Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit Rev Food Sci Nutr 4:1–6Google Scholar
  18. 18.
    Wu G (2016) Dietary protein intake and human health. Food Funct 7:1251–1265CrossRefPubMedGoogle Scholar
  19. 19.
    Gabaldon T (2006) Computational approaches for the prediction of protein function in the mitochondrion. Am J Physiol Renal Physiol 291:C1121–C1128CrossRefGoogle Scholar
  20. 20.
    Mills CL, Beuning PJ, Ondrechen MJ (2015) Biochemical functional predictions for protein structures of unknown or uncertain function. J Assoc Off Anal Chem 13:182–191Google Scholar
  21. 21.
    Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Ben-Hur A (2013) A large-scale evaluation of computational protein function prediction. Nat Methods 10:221–227CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang SH, Moran DL, Jia HW, Bicar EH, Lee M, Scott MP (2002) Expression of a synthetic porcine α-lactalbumin gene in the kernels of transgenic maize. Transgenic Res 11:11–20CrossRefPubMedGoogle Scholar
  24. 24.
    Luna-Suárez S, Medina-Godoy S, Cruz-Hernández A, Paredes-López O (2008) Expression and characterization of the acidic subunit from 11S amaranth seed protein. Biotechnol J 3:209–219CrossRefPubMedGoogle Scholar
  25. 25.
    Castro-Martínez C, Luna-Suárez S, Paredes-López O (2012) Overexpression of a modified protein from amaranth seed in Escherichia coli and effect of environmental conditions on the protein expression. J Biotechnol 158:59–67CrossRefPubMedGoogle Scholar
  26. 26.
    Egnin M, Prakash CS (1997) Transgenic sweetpotato expressing a synthetic storage protein gene exhibits high level of total protein and essential amino acids. In Vitro Cell Dev Biol 33:52AGoogle Scholar
  27. 27.
    Gould F, Amasino RM, Brossard D, Buell CR, Dixon RA, Falck-Zepeda B, Gallo MA, Giller KE, Glenna LL, Griffin T, Hamaker BR, Kareiva PM, Magraw D, Mallory-Smith C, Pixley KV, Ransom EP, Rodemeyer M, Stelly DM, Stewart CN Jr, Whitaker RJ (2017) Elevating the conversation about GE crops. Nat Biotechnol. 35, 302–304CrossRefPubMedGoogle Scholar
  28. 28.
    Kalman DS (2014) Amino acid composition of an organic brown rice protein concentrate and isolate compared to soy and whey concentrates and isolates. Foods 3:394–402CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 24:1513–1523CrossRefGoogle Scholar
  30. 30.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  31. 31.
    Southern JA, Young DF, Heaney F, Baumgärtner WK, Randall RE (1991) Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J Gen Virol 72:1551–1557CrossRefPubMedGoogle Scholar
  32. 32.
    Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203CrossRefPubMedGoogle Scholar
  33. 33.
    Thompson D, Larson G (1992) Western blots using stained protein gels. Biotechniques 12:656–658PubMedGoogle Scholar
  34. 34.
    Van Oss CJ, Good RJ, Chaudhury MK (1987) Mechanism of DNA (Southern) and protein (Western) blotting on cellulose nitrate and other membranes. J Chromatogr 391:53–65CrossRefPubMedGoogle Scholar
  35. 35.
    Hsu HW, Vavak DL, Satterlee LD, Miller GA (1977) A multienzyme technique for estimating protein digestibility. J Food Sci 42:1269–1273CrossRefGoogle Scholar
  36. 36.
    FAO/WHO Expert Consultation (1990) Report on protein quality evaluation. FAO Food and Nutrition, Paper 51, RomeGoogle Scholar
  37. 37.
    Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760:1304–1313CrossRefPubMedGoogle Scholar
  38. 38.
    Howell JM, Winstone TL, Coorssen JR, Turner RJ (2006) An evaluation of in vitro protein–protein interaction techniques: assessing contaminating background proteins. Proteomics 6:2050–2069CrossRefPubMedGoogle Scholar
  39. 39.
    Gräslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Hui R (2008) Protein production and purification. Nat Methods 5:135–146CrossRefPubMedGoogle Scholar
  40. 40.
    Guimarães RCA, Favaro SP, Viana ACA, Braga Neto JA, Neves VA, Honer MR (2012) Study of the proteins in the defatted flour and protein concentrate of baru nuts (Dipteryx alata Vog). Food Sci Technol 32:464–470CrossRefGoogle Scholar
  41. 41.
    Pedersen B, Eggum BO (1983) Prediction of protein digestibility by an in vitro enzymatic pH-stat procedure. J Anim Physiol Anim Nutr 49:265–277Google Scholar
  42. 42.
    Sant’Ana RCO, Mendes FQ, Pires CV, Oliveira MGA (2011) Influence of lipid extraction from different protein sources on in vitro digestibility. Ciênc Agrotec 35:758–764CrossRefGoogle Scholar
  43. 43.
    Tavano OL, Neves VA, da Silva Júnior SI (2016) In vitro versus in vivo protein digestibility techniques for calculating PDCAAS (protein digestibility-corrected amino acid score) applied to chickpea fractions. Food Res Int 89:756–763CrossRefPubMedGoogle Scholar
  44. 44.
    McLain WH, Foss K, Mittelstadt KL, Schneider J (1986) Variants in clones of gene-machine-synthesised oligo deoxynucleotides. Nucleic Acids Res 14:6770CrossRefGoogle Scholar
  45. 45.
    Wosnick MA, Barnett RW, Vicentini AM, Erfie H, Elliott R, Summer-Smith M, Mantel N, Davies RW (1987) Rapid construction of large synthetic genes: total chemical synthesis of two different versions of the bovine prochymosin gene. Gene 60:115–127CrossRefPubMedGoogle Scholar
  46. 46.
    Davasse V, Jean-Marc M (1992) Design and functional expression in Escherichia coli of a synthetic gene encoding Clostridium pasteurianum 2[4Fe-4S] ferredoxin. Biochem Biophys Res Commun 185:341–349CrossRefPubMedGoogle Scholar
  47. 47.
    Singh PK, Sarangi BK, Tuli R (1996) A facile method for the construction of synthetic genes. J Biosci 21:735–741CrossRefGoogle Scholar
  48. 48.
    Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177:1497–1504CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dumon-Seignovert L, Cariot G, Vuillard L (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21 (DE3), C41 (DE3), and C43 (DE3). Protein Expr Purif 37:203–206CrossRefPubMedGoogle Scholar
  50. 50.
    Astakhova LN, Zatsepina OG, Funikov SY, Zelentsova ES, Schostak NG, Orishchenko KE, Evgen’ev MB, Garbuz DG (2015) Activity of heat shock genes promoters in thermally contrasting animal species. PLoS ONE 10:e0115536CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Guzman LM, Belin D, Carson MJ, Beckwith JON (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298CrossRefPubMedGoogle Scholar
  53. 53.
    Arano-Varela H, Dominguez-Dominguez J, Paredes-Lopez O (2012) Effect of environmental conditions on the expression levels of a recombinant 11S amaranth globulin in Escherichia coli. Recent Pat Biotechnol 6:23–31CrossRefPubMedGoogle Scholar
  54. 54.
    Martínez-Solís M, Herrero S, Targovnik AM (2018) Engineering of the baculovirus expression system for optimized protein production. Appl Microbiol Biotechnol. CrossRefPubMedGoogle Scholar
  55. 55.
    Hammarström M, Woestenenk EA, Hellgren N, Härd T, Berglund H (2006) Effect of N-terminal solubility enhancing fusion proteins on yield of purified target protein. J Struct Funct Genomics 7:1–14CrossRefPubMedGoogle Scholar
  56. 56.
    Damodaran S, Parkin KL, Fennema OR (2010) Fennema Química de los alimentos, 3a edn. Editorial Acribia S. A., BarcelonaGoogle Scholar
  57. 57.
    Sarwar G (1987) Digestibility of protein and bioavailability of amino acids in foods. In: Bourne GH (ed) Nutrition in the Gulf countries. Malnutrition minerals, vol 54. Karger, Basel, pp 26–70Google Scholar
  58. 58.
    Bodwell CE, Adkins JS, Hopkins DT (1981) Protein quality in humans, assessment and in vitro estimation. AVI Pub. Co, WestportGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ma. I. Sánchez-Crisóstomo
    • 1
  • M. I. Rojo-López
    • 1
  • A. Sharma
    • 2
  • J. C. Cancino-Diaz
    • 3
  • H. Jaimes-Díaz
    • 4
  • J. A. Ariza-Ortega
    • 1
  • E. Madrigal-Santillán
    • 5
  • G. Betanzos-Cabrera
    • 1
    • 5
    • 6
    Email author
  1. 1.Área Académica de Nutrición, Instituto de Ciencias de la SaludUniversidad Autónoma del Estado de HidalgoSan Agustín TlaxiacaMexico
  2. 2.Tecnologico de Monterrey, School of Engineering and Sciences Campus QueretaroQueretaroMexico
  3. 3.Laboratorio de Inmunomicrobiología. Departamento de MicrobiologíaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional11340 Mexico CityMexico
  4. 4.Laboratory of Biotechnology and Genomic Bioinformatics, Department of Biochemistry, National School of Biological SciencesNational Polytechnic InstituteMexico CityMexico
  5. 5.Área Académica de Medicina, Instituto de Ciencias de la SaludUniversidad Autónoma del Estado de HidalgoSan Agustín TlaxiacaMexico
  6. 6.Universidad Autónoma del Estado de HidalgoPachucaMexico

Personalised recommendations