Advertisement

Chromosome-based gene co-expression analysis reveals regions associated with cancers: chromosome 1 as an example

Letter to the Editor
  • 21 Downloads

Abstract

Gene co-expression network analysis has been widely performed in systems biology. Here, I use a chromosome-based strategy to find potential chromosome regions associated with disease, and show an example of cancer. All results are available at http://bioinformatics.fafu.edu.cn/chrom-WGCNA/.

Keywords

WGCNA QTL Positional gene enrichment Chromosome 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 81502091). I thank The Broad Institute of MIT & Harvard for sharing their Cancer Cell Line Encyclopedia project. I thank Catherine Perfect, MA (Cantab), from Liwen Bianji, Edanz Editing China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The author declares that there are no competing interests.

References

  1. 1.
    Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24.  https://doi.org/10.1016/j.ajhg.2011.11.029 CrossRefGoogle Scholar
  2. 2.
    Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C, Casey G, De Biasi M, Carlson C, Duggan D, James M, Liu P, Tichelaar JW, Vikis HG, You M, Mills IG (2011) Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet 43(6):513–518.  https://doi.org/10.1038/ng.840 CrossRefGoogle Scholar
  3. 3.
    Li H, Wang Y, Liu H, Shi Q, Xu Y, Wu W, Zhu D, Amos CI, Fang S, Lee JE, Han J, Wei Q (2017) Genetic variants in the integrin signaling pathway genes predict cutaneous melanoma survival. Int J Cancer 140(6):1270–1279.  https://doi.org/10.1002/ijc.30545 CrossRefGoogle Scholar
  4. 4.
    Weng L, Macciardi F, Subramanian A, Guffanti G, Potkin SG, Yu Z, Xie X (2011) SNP-based pathway enrichment analysis for genome-wide association studies. BMC Bioinformatics 12:99.  https://doi.org/10.1186/1471-2105-12-99 CrossRefGoogle Scholar
  5. 5.
    Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S, Champy MF, Zhang B, Emilsson V, Doss S, Ghazalpour A, Horvath S, Drake TA, Lusis AJ, Schadt EE (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452(7186):429–435.  https://doi.org/10.1038/nature06757 CrossRefGoogle Scholar
  6. 6.
    Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68.  https://doi.org/10.1038/nrg2918 CrossRefGoogle Scholar
  7. 7.
    Weiss JN, Karma A, MacLellan WR, Deng M, Rau CD, Rees CM, Wang J, Wisniewski N, Eskin E, Horvath S, Qu Z, Wang Y, Lusis AJ (2012) “Good enough solutions” and the genetics of complex diseases. Circ Res 111(4):493–504.  https://doi.org/10.1161/CIRCRESAHA.112.269084 CrossRefGoogle Scholar
  8. 8.
    Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24(5):719–720CrossRefGoogle Scholar
  9. 9.
    De Preter K, Barriot R, Speleman F, Vandesompele J, Moreau Y (2008) Positional gene enrichment analysis of gene sets for high-resolution identification of overrepresented chromosomal regions. Nucleic Acids Res 36(7):e43.  https://doi.org/10.1093/nar/gkn114 CrossRefGoogle Scholar
  10. 10.
    La Starza R, Crescenzi B, Pierini V, Romoli S, Gorello P, Brandimarte L, Matteucci C, Kropp MG, Barba G, Martelli MF, Mecucci C (2007) A common 93-kb duplicated DNA sequence at 1q21.2 in acute lymphoblastic leukemia and Burkitt lymphoma. Cancer Genet Cytogenet 175(1):73–76.  https://doi.org/10.1016/j.cancergencyto.2007.01.011 CrossRefGoogle Scholar
  11. 11.
    Macgregor S, Montgomery GW, Liu JZ, Zhao ZZ, Henders AK, Stark M, Schmid H, Holland EA, Duffy DL, Zhang M, Painter JN, Nyholt DR, Maskiell JA, Jetann J, Ferguson M, Cust AE, Jenkins MA, Whiteman DC, Olsson H, Puig S, Bianchi-Scarra G, Hansson J, Demenais F, Landi MT, Debniak T, Mackie R, Azizi E, Bressac-de Paillerets B, Goldstein AM, Kanetsky PA, Gruis NA, Elder DE, Newton-Bishop JA, Bishop DT, Iles MM, Helsing P, Amos CI, Wei Q, Wang LE, Lee JE, Qureshi AA, Kefford RF, Giles GG, Armstrong BK, Aitken JF, Han J, Hopper JL, Trent JM, Brown KM, Martin NG, Mann GJ, Hayward NK (2011) Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nat Genet 43(11):1114–1118.  https://doi.org/10.1038/ng.958 CrossRefGoogle Scholar
  12. 12.
    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905.  https://doi.org/10.1038/nature08822 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations