Advertisement

Molecular Biology Reports

, Volume 46, Issue 1, pp 1533–1549 | Cite as

Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles

  • Fariba Rad
  • Mohammad Ghorbani
  • Amaneh Mohammadi Roushandeh
  • Mehryar Habibi RoudkenarEmail author
Review

Abstract

In autoimmune disease body’s own immune system knows healthy cells as undesired and foreign cells. Over 80 types of autoimmune diseases have been recognized. Currently, at clinical practice, treatment strategies for autoimmune disorders are based on relieving symptoms and preventing difficulties. In other words, there is no effective and useful therapy up to now. It has been well-known that mesenchymal stem cells (MSCs) possess immunomodulatory effects. This strongly suggests that MSCs might be as a novel modality for treatment of autoimmune diseases. Supporting this notion a few preclinical and clinical studies indicate that MSCs ameliorate autoimmune disorders. Interestingly, it has been found that the beneficial effects of MSCs in autoimmune disorders are not relying only on direct cell-to-cell communication but on their capability to produce a broad range of paracrine factors including growth factors, cytokines and extracellular vehicles (EVs). EVs are multi-signal messengers that play a serious role in intercellular signaling through carrying cargo such as mRNA, miRNA, and proteins. Numerous studies have shown that MSC-derived EVs are able to mimic the effects of the cell of origin on immune cells. In this review, we discuss the current studies dealing with MSC-based therapies in autoimmune diseases and provide a vision and highlight in order to introduce MSC-derived EVs as an alternative and emerging modality for autoimmune disorders.

Keywords

Autoimmune diseases Mesenchymal stem cells Extracellular vesicles Cell-free therapy Immune cells 

Notes

Acknowledgements

Part of this study was supported by Guilan University of Medical Sciences (Grant No: IR.GUMS.REC.1396.343).

Compliance with ethical standards

Conflict of interest

The authors declare no potential conflicts of interest.

References

  1. 1.
    Wang L, Wang FS, Gershwin ME (2015) Human autoimmune diseases: a comprehensive update. J Intern Med 278(4):369–395CrossRefPubMedGoogle Scholar
  2. 2.
    Ray S, Sonthalia N, Kundu S, Ganguly S (2012) Autoimmune disorders: an overview of molecular and cellular basis in today’s perspective. J Clin Cell Immunol S 10:003Google Scholar
  3. 3.
    Abbas AK, Lichtman AH, Pillai S (2014) Cellular and molecular immunology E-book: Elsevier Health SciencesGoogle Scholar
  4. 4.
    Jancar S, Crespo MS (2005) Immune complex-mediated tissue injury: a multistep paradigm. Trends Immunol 26(1):48–55CrossRefPubMedGoogle Scholar
  5. 5.
    Muñoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280CrossRefPubMedGoogle Scholar
  6. 6.
    Roeleveld DM, Koenders MI (2015) The role of the Th17 cytokines IL-17 and IL-22 in rheumatoid arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine 74(1):101–107CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang H-L, Zheng X-Y, Zhu J (2013) Th1/Th2/Th17/Treg cytokines in Guillain–Barré syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev 24(5):443–453CrossRefPubMedGoogle Scholar
  8. 8.
    Li Y-F, Zhang S-X, Ma X-W, Xue Y-L, Gao C, Li X-Y (2017) Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with multiple sclerosis: a meta-analysis. Multiple Scler Relat Disord 18:20–25CrossRefGoogle Scholar
  9. 9.
    Nicoletti F, Créange A, Orlikowski D, Bolgert F, Mangano K, Metz C et al (2005) Macrophage migration inhibitory factor (MIF) seems crucially involved in Guillain–Barré syndrome and experimental allergic neuritis. J Neuroimmunol 168(1–2):168–174CrossRefPubMedGoogle Scholar
  10. 10.
    Benedek G, Meza-Romero R, Jordan K, Zhang Y, Nguyen H, Kent G et al (2017) MIF and D-DT are potential disease severity modifiers in male MS subjects. Proc Natl Acad Sci 114(40):E8421–E9CrossRefPubMedGoogle Scholar
  11. 11.
    Fagone P, Mazzon E, Cavalli E, Bramanti A, Petralia MC, Mangano K et al (2018) Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: in silico and in vivo evidences. J Neuroimmunol 322:46–56CrossRefPubMedGoogle Scholar
  12. 12.
    Karo-Atar D, Bitton A, Benhar I, Munitz A (2018) Therapeutic targeting of the interleukin-4/interleukin-13 signaling pathway: in allergy and beyond. BioDrugs 32:1–20CrossRefGoogle Scholar
  13. 13.
    Fagone P, Mangano K, Pesce A, Portale TR, Puleo S, Nicoletti F (2016) Emerging therapeutic targets for the treatment of hepatic fibrosis. Drug Discov Today 21(2):369–375CrossRefPubMedGoogle Scholar
  14. 14.
    Barcellini W, Rizzardi G, Borghi M, Nicoletti F, Fain C, Del Papa N et al (1996) In vitro type-1 and type-2 cytokine production in systemic lupus erythematosus: lack of relationship with clinical disease activity. Lupus 5(2):139–145CrossRefPubMedGoogle Scholar
  15. 15.
    Nicoletti F, Di Marco R, Patti F, Reggio E, Nicoletti A, Zaccone P et al (1998) Blood levels of transforming growth factor-beta 1 (TGF-β1) are elevated in both relapsing remitting and chronic progressive multiple sclerosis (MS) patients and are further augmented by treatment with interferon-beta 1b (IFN-β1b). Clin Exp Immunol 113(1):96–99CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dujmovic I, Mangano K, Pekmezovic T, Quattrocchi C, Mesaros S, Stojsavljevic N et al (2009) The analysis of IL-1 beta and its naturally occurring inhibitors in multiple sclerosis: the elevation of IL-1 receptor antagonist and IL-1 receptor type II after steroid therapy. J Neuroimmunol 207(1–2):101–106CrossRefPubMedGoogle Scholar
  17. 17.
    Nadkarni S, Mauri C, Ehrenstein MR (2007) Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J Exp Med 204(1):33–39CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu Q, Wang Q, Mao G, Dowling CA, Lundy SK, Mao-Draayer Y (2017) Dimethyl fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients. J Immunol.  https://doi.org/10.4049/jimmunol.1601532 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lai Y, Dong C (2015) Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int Immunol 28(4):181–188CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fragoulis GE, Siebert S, McInnes IB (2016) Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Ann Rev Med 67:337–353CrossRefPubMedGoogle Scholar
  21. 21.
    Scharl M, Vavricka R, Rogler G (2013) New anti-cytokines for IBD: what is in the pipeline? Curr Drug Targets 14(12):1405–1420CrossRefPubMedGoogle Scholar
  22. 22.
    Ramos-Casals M, Diaz-Lagares C, Cuadrado M-J, Khamashta MA, Group BS (2010) Autoimmune diseases induced by biological agents: a double-edged sword? Autoimmun Rev 9(3):188–193CrossRefPubMedGoogle Scholar
  23. 23.
    Zintzaras E, Voulgarelis M, Moutsopoulos HM (2005) The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med 165(20):2337–2344CrossRefPubMedGoogle Scholar
  24. 24.
    Pérez-De-Lis M, Retamozo S, Flores-Chávez A, Kostov B, Perez-Alvarez R, Brito-Zerón P et al (2017) Autoimmune diseases induced by biological agents. A review of 12,731 cases (BIOGEAS Registry). Expert Opin Drug Saf 16(11):1255–1271CrossRefPubMedGoogle Scholar
  25. 25.
    Kalden JR, Schulze-Koops H (2017) Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat Rev Rheumatol 13(12):707CrossRefPubMedGoogle Scholar
  26. 26.
    Tyndall A (2011) Successes and failures of stem cell transplantation in autoimmune diseases. ASH Educ Program Book 2011(1):280–284Google Scholar
  27. 27.
    Del Fattore A, Luciano R, Pascucci L, Goffredo BM, Giorda E, Scapaticci M et al (2015) Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant 24(12):2615–2627CrossRefPubMedGoogle Scholar
  28. 28.
    Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res.  https://doi.org/10.1155/2015/394917 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Blanco B, Herrero-Sánchez MdC, Rodríguez-Serrano C, García-Martínez ML, Blanco JF, Muntión S et al (2016) Immunomodulatory effects of bone marrow versus adipose tissue-derived mesenchymal stromal cells on NK cells: implications in the transplantation setting. Eur J Haematol 97(6):528–537CrossRefPubMedGoogle Scholar
  30. 30.
    Amiri F, Jahanian-Najafabadi A, Roudkenar MH (2015) In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments. Cell Stress Chaperones 20(2):237–251CrossRefPubMedGoogle Scholar
  31. 31.
    Roushandeh AM, Bahadori M, Roudkenar MH (2017) Mesenchymal stem cell-based therapy as a new horizon for kidney injuries. Arch Med Res 48(2):133–146CrossRefPubMedGoogle Scholar
  32. 32.
    Fontaine MJ, Shih H, Schäfer R, Pittenger MF (2016) Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev 30(1):37–43CrossRefPubMedGoogle Scholar
  33. 33.
    Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27(8):3037–3042CrossRefPubMedGoogle Scholar
  34. 34.
    Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK (2009) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH (2018) Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep 14:484–499CrossRefPubMedGoogle Scholar
  37. 37.
    Bassi ÊJ, de Almeida DC, Moraes-Vieira PMM, Câmara NOS (2012) Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Rev Rep 8(2):329–342CrossRefPubMedGoogle Scholar
  38. 38.
    Vianello F, Dazzi F (2008) Mesenchymal stem cells for graft-versus-host disease: a double edged sword? Leukemia 22(3):463-465CrossRefGoogle Scholar
  39. 39.
    Halabian R, Tehrani HA, Jahanian-Najafabadi A, Roudkenar MH (2013) Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell Stress Chaperones 18(6):785–800CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kiani AA, Kazemi A, Halabian R, Mohammadipour M, Jahanian-Najafabadi A, Roudkenar MH (2013) HIF-1α confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Arch Med Res 44(3):185–193CrossRefPubMedGoogle Scholar
  41. 41.
    Wong RS (2011) Mesenchymal stem cells: angels or demons? BioMed Res Int.  https://doi.org/10.1155/2011/459510 CrossRefGoogle Scholar
  42. 42.
    Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Short B, Brouard N, Driessen R, Simmons P (2001) Prospective isolation of stromal progenitor cells from mouse BM. Cytotherapy 3(5):407–408CrossRefPubMedGoogle Scholar
  44. 44.
    Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36(4):568–584CrossRefPubMedGoogle Scholar
  45. 45.
    Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A et al (2014) Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones 19(5):657–666CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Amiri F, Halabian R, Dehgan Harati M, Bahadori M, Mehdipour A, Mohammadi Roushandeh A et al (2015) Positive selection of Wharton’s jelly-derived CD105 + cells by MACS technique and their subsequent cultivation under suspension culture condition: a simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology 20(4):208–216CrossRefPubMedGoogle Scholar
  47. 47.
    Troyer DL, Weiss ML (2008) Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599CrossRefPubMedGoogle Scholar
  48. 48.
    Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749CrossRefPubMedGoogle Scholar
  49. 49.
    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57(7):1759–1767CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525CrossRefPubMedGoogle Scholar
  52. 52.
    Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D (2010) Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 1(1):2CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12(1):47–57CrossRefPubMedGoogle Scholar
  54. 54.
    Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2(11):859CrossRefPubMedGoogle Scholar
  55. 55.
    Götherström C (2007) Immunomodulation by multipotent mesenchymal stromal cells. Transplantation 84(1):S35–S37CrossRefPubMedGoogle Scholar
  56. 56.
    De Miguel P, Fuentes-Julian M, Blazquez-Martinez S, Pascual C AY, Aller A, Arias M et al (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):574–591CrossRefPubMedGoogle Scholar
  57. 57.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822CrossRefPubMedGoogle Scholar
  58. 58.
    Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K et al (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Castro-Manrreza ME (2016) Participation of mesenchymal stem cells in the regulation of immune response and cancer development. Boletín Médico Del Hospital Infantil de México (English Edition) 73(6):380–387CrossRefGoogle Scholar
  60. 60.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth S, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20CrossRefPubMedGoogle Scholar
  61. 61.
    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A et al (2006) Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24(2):386–398CrossRefPubMedGoogle Scholar
  62. 62.
    Glennie S, Soeiro I, Dyson PJ, Lam EW-F, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827CrossRefPubMedGoogle Scholar
  63. 63.
    Saldanha-Araujo F, Ferreira FI, Palma PV, Araujo AG, Queiroz RH, Covas DT et al (2011) Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res 7(1):66–74CrossRefPubMedGoogle Scholar
  64. 64.
    Lee H-J, Kim S-N, Jeon M-S, Yi T, Song SU (2017) ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Sci Rep 7:44486CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ko JH, Lee HJ, Jeong HJ, Kim MK, Wee WR, Yoon S-o et al (2016) Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo-and autoimmunity in the eye. Proc Natl Acad Sci 113(1):158–163CrossRefPubMedGoogle Scholar
  66. 66.
    Yan L, Zheng D, Xu R (2018) Critical role of TNF signaling in mesenchymal stem cell-based therapy for autoimmune and inflammatory diseases. Front Immunol 9:1658CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Angulski AB, Capriglione LG, Batista M, Marcon BH, Senegaglia AC, Stimamiglio MA et al (2017) The protein content of extracellular vesicles derived from expanded human umbilical cord blood-derived CD133+ and human bone marrow-derived mesenchymal stem cells partially explains why both sources are advantageous for regenerative medicine. Stem Cell Rev Rep 13(2):244–257CrossRefPubMedGoogle Scholar
  68. 68.
    Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L (2018) Extracellular vesicles as conveyors of membrane-derived bioactive lipids in immune system. Int J Mol Sci 19(4):1227CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Álvarez V, Tarazona R et al (2014) Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol 5:556CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    de Araújo Farias V, Carrillo-Gálvez AB, Martín F, Anderson P (2018) TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev 43:25–37CrossRefPubMedGoogle Scholar
  71. 71.
    Gebler A, Zabel O, Seliger B (2012) The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med 18(2):128–134CrossRefPubMedGoogle Scholar
  72. 72.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726CrossRefPubMedGoogle Scholar
  73. 73.
    Ivanova-Todorova E, Bochev I, Mourdjeva M, Dimitrov R, Bukarev D, Kyurkchiev S et al (2009) Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett 126(1–2):37–42CrossRefPubMedGoogle Scholar
  74. 74.
    Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087CrossRefPubMedGoogle Scholar
  75. 75.
    Liu W-h, Liu J-j, Wu J, Zhang L-l, Liu F, Yin L et al (2013) Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PLoS ONE 8(1):e55487CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85CrossRefPubMedGoogle Scholar
  77. 77.
    Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26(1):151–162CrossRefPubMedGoogle Scholar
  78. 78.
    Zhao Q, Ren H, Han Z (2016) Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother 2(1):3–20CrossRefGoogle Scholar
  79. 79.
    He M, Shi X, Yang M, Yang T, Li T, Chen J (2019) Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol 311:15–32CrossRefPubMedGoogle Scholar
  80. 80.
    Mammana S, Bramanti P, Mazzon E, Cavalli E, Basile MS, Fagone P et al (2018) Preclinical evaluation of the PI3K/Akt/mTOR pathway in animal models of multiple sclerosis. Oncotarget 9(9):8263CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Donia M, Mangano K, Amoroso A, Mazzarino MC, Imbesi R, Castrogiovanni P et al (2009) Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+ CD25+ Foxp3+ regulatory T cells. J Autoimmun 33(2):135–140CrossRefPubMedGoogle Scholar
  82. 82.
    Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 9(6):482CrossRefPubMedGoogle Scholar
  83. 83.
    Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761CrossRefPubMedGoogle Scholar
  84. 84.
    Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J et al (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagen-induced arthritis. Arthritis Rheum 52(5):1595–1603CrossRefPubMedGoogle Scholar
  85. 85.
    González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60(4):1006–1019CrossRefPubMedGoogle Scholar
  86. 86.
    Choi JJ, Yoo SA, Park SJ, Kang YJ, Kim WU, Oh IH et al (2008) Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol 153(2):269–276CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Villatoro AJ, Fernández V, Claros S, Rico-Llanos GA, Becerra J, Andrades JA (2015) Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. BioMed Res Int.  https://doi.org/10.1155/2015/527926 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Bassi ÊJ, Moraes-Vieira PM, Sá CSM, Almeida DC, Vieira LM, Cunha CS et al (2012) Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes.  https://doi.org/10.2337/db11-0844 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Rafei M, Campeau PM, Aguilar-Mahecha A, Buchanan M, Williams P, Birman E et al (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182(10):5994–6002CrossRefPubMedGoogle Scholar
  90. 90.
    Jang E, Jeong M, Kim S, Jang K, Kang B-K, Lee DY et al (2016) Infusion of human bone marrow-derived mesenchymal stem cells alleviates autoimmune nephritis in a lupus model by suppressing follicular helper T-cell development. Cell Transplant 25(1):1–15CrossRefPubMedGoogle Scholar
  91. 91.
    Youd M, Blickarz C, Woodworth L, Touzjian T, Edling A, Tedstone J et al (2010) Allogeneic mesenchymal stem cells do not protect NZB × NZW F1 mice from developing lupus disease. Clin Exp Immunol 161(1):176–186PubMedPubMedCentralGoogle Scholar
  92. 92.
    Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE 9(9):e107001CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regenerat Med 5(1):121–143CrossRefGoogle Scholar
  95. 95.
    Shimada Y, Minna JD (2017) Exosome mediated phenotypic changes in lung cancer pathophysiology. Transl Cancer Res 6(S6):S1040–S1042CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Simons M, Raposo G (2009) Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581CrossRefPubMedGoogle Scholar
  97. 97.
    Rad F, Pourfathollah AA, Yari F, Mohammadi S, Kheirandish M (2016) Microvesicles preparation from mesenchymal stem cells. Med J IR Iran 30:398Google Scholar
  98. 98.
    Nassar W, El-Ansary M, Aziz MA, El-Hakim E (2015) Extracellular vesicles: fundamentals and clinical relevance. Egypt J Intern Med 27(1):1CrossRefGoogle Scholar
  99. 99.
    Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978CrossRefPubMedGoogle Scholar
  100. 100.
    Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M (2015) Isolation of extracellular vesicles: determining the correct approach. Int J Mol Med 36(1):11–17CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L et al (2014) Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 3(1):25011CrossRefPubMedGoogle Scholar
  103. 103.
    Van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705CrossRefPubMedGoogle Scholar
  104. 104.
    Simpson RJ, Kalra H, Mathivanan S (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles 1(1):18374CrossRefGoogle Scholar
  105. 105.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Beer KB, Wehman AM (2017) Mechanisms and functions of extracellular vesicle release in vivo—what we can learn from flies and worms. Cell Adhes Migr 11(2):135–150CrossRefGoogle Scholar
  107. 107.
    Tricarico C, Clancy J, D’Souza-Schorey C (2017) Biology and biogenesis of shed microvesicles. Small GTPases 8(4):220–232CrossRefPubMedGoogle Scholar
  108. 108.
    Katsuda T, Kosaka N, Takeshita F, Ochiya T (2013) The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13(10–11):1637–1653CrossRefPubMedGoogle Scholar
  109. 109.
    Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE 5(7):e11803CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G (2012) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22(5):758–771CrossRefPubMedGoogle Scholar
  111. 111.
    Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Skalnikova HK (2013) Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95(12):2196–2211CrossRefGoogle Scholar
  113. 113.
    Kim H-S, Choi D-Y, Yun SJ, Choi S-M, Kang JW, Jung JW et al (2011) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11(2):839–849CrossRefPubMedGoogle Scholar
  114. 114.
    Zhang H-C, Liu X-B, Huang S, Bi X-Y, Wang H-X, Xie L-X et al (2012) Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 21(18):3289–3297CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Park C, Huang JZ, Ji JX, Ding Y (2013) Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans Pattern Anal Mach Intell 35(3):1–1CrossRefGoogle Scholar
  116. 116.
    Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066CrossRefPubMedGoogle Scholar
  117. 117.
    Kalra H, Drummen GP, Mathivanan S (2016) Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci 17(2):170CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M et al (2015) Exosomes: novel biomarkers for clinical diagnosis. Sci World J.  https://doi.org/10.1155/2015/657086 CrossRefGoogle Scholar
  119. 119.
    Ferguson SW, Nguyen J (2016) Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Controlled Release 228:179–190CrossRefGoogle Scholar
  120. 120.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654CrossRefGoogle Scholar
  121. 121.
    Ratajczak MZ, Ratajczak J (2016) Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Transl Med 5(1):7CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Quesenberry PJ, Aliotta J, Deregibus MC, Camussi G (2015) Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Res Ther 6(1):153CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Quesenberry PJ, Goldberg LR, Aliotta JM, Dooner MS, Pereira MG, Wen S et al (2014) Cellular phenotype and extracellular vesicles: basic and clinical considerations. Stem Cells Dev 23(13):1429–1436CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Nawaz M, Fatima F, Vallabhaneni KC, Penfornis P, Valadi H, Ekström K et al (2016) Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int.  https://doi.org/10.1155/2016/1073140 CrossRefPubMedGoogle Scholar
  125. 125.
    Nawaz M, Fatima F (2017) Extracellular vesicles, tunneling nanotubes, and cellular interplay: synergies and missing links. Front Mol Biosci 4:50CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J et al (2015) LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 13(1):308CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Ti D, Hao H, Fu X, Han W (2016) Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci 59(12):1305–1312CrossRefPubMedGoogle Scholar
  128. 128.
    Di Rocco G, Baldari S, Toietta G (2016) Towards therapeutic delivery of extracellular vesicles: strategies for in vivo tracking and biodistribution analysis. Stem Cells Int.  https://doi.org/10.1155/2016/5029619 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I et al (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4(1):26316CrossRefPubMedGoogle Scholar
  130. 130.
    Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C et al (2014) Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med 33(5):1055–1063CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Budoni M, Fierabracci A, Luciano R, Petrini S, Di Ciommo V, Muraca M (2013) The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transpl 22(2):369–379CrossRefGoogle Scholar
  132. 132.
    Henao Agudelo JS, Braga TT, Amano MT, Cenedeze MA, Cavinato RA, Peixoto-Santos AR et al (2017) Mesenchymal stromal cell-derived microvesicles regulate an internal pro-inflammatory program in activated macrophages. Front Immunol 8:881CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Shigemoto-Kuroda T, Oh JY, Kim D-k, Jeong HJ, Park SY, Lee HJ et al (2017) MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell Rep 8(5):1214–1225CrossRefGoogle Scholar
  134. 134.
    Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C et al (2018) Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8(5):1399CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Kordelas L, Rebmann V, Ludwig A, Radtke S, Ruesing J, Doeppner T et al (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28(4):970CrossRefPubMedGoogle Scholar
  136. 136.
    Favaro E, Carpanetto A, Caorsi C, Giovarelli M, Angelini C, Cavallo-Perin P et al (2016) Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia 59(2):325–333CrossRefPubMedGoogle Scholar
  137. 137.
    Sharma J, Hampton JM, Valiente GR, Wada T, Steigelman H, Young MC et al (2017) Therapeutic development of mesenchymal stem cells or their extracellular vesicles to inhibit autoimmune-mediated inflammatory processes in systemic lupus erythematosus. Front Immunol 8:526CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Hai B, Shigemoto-Kuroda T, Zhao Q, Lee RH, Liu F (2018) Inhibitory effects of iPSC-MSCs and their extracellular vesicles on the onset of sialadenitis in a mouse model of Sjögren’s Syndrome. Stem Cells Int.  https://doi.org/10.1155/2018/2092315 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Soundara Rajan T, Giacoppo S, Diomede F, Bramanti P, Trubiani O, Mazzon E (2017) Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis. Int J Immunopathol Pharmacol 30(3):238–252CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM (2018) Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. J Cell Biochem 119(11):9433–9443CrossRefPubMedGoogle Scholar
  141. 141.
    Rajan TS, Giacoppo S, Diomede F, Ballerini P, Paolantonio M, Marchisio M et al (2016) The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci Rep 6:38743CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Laso-García F, Ramos-Cejudo J, Carrillo-Salinas FJ, Otero-Ortega L, Feliú A, Gómez-de Frutos M et al (2018) Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis. PLoS ONE 13(9):e0202590CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Chen Z, Wang H, Xia Y, Yan F, Lu Y (2018) Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 201(8):2472–2482CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Zhu L, Huang X, Yu W, Chen H, Chen Y, Dai Y (2018) Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia 50(2):e12871CrossRefGoogle Scholar
  145. 145.
    Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid A-A, Mardani K (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147(1–2):47–54CrossRefPubMedGoogle Scholar
  146. 146.
    Jacquelin S, Licata F, Dorgham K, Hermand P, Poupel L, Guyon E et al (2013) CX3CR1 reduces Ly6Chigh-monocyte motility within, and release from the bone marrow after chemotherapy in mice. Blood.  https://doi.org/10.1182/blood-2013-01-480749 CrossRefPubMedGoogle Scholar
  147. 147.
    Hidalgo-Garcia L, Galvez J, Rodriguez-Cabezas ME, Anderson PO (2018) Can a conversation between mesenchymal stromal cells and macrophages solve the crisis in the inflamed intestine? Front Pharmacol 9:179CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Jaimes Y, Naaldijk Y, Wenk K, Leovsky C, Emmrich F (2017) Mesenchymal stem cell-derived microvesicles modulate lipopolysaccharides-induced inflammatory responses to microglia cells. Stem Cells 35(3):812–823CrossRefPubMedGoogle Scholar
  149. 149.
    Bruno S, Deregibus MC, Camussi G (2015) The secretome of mesenchymal stromal cells: role of extracellular vesicles in immunomodulation. Immunol Lett 168(2):154–158CrossRefPubMedGoogle Scholar
  150. 150.
    Favaro E, Deregibus M, Camussi E, Granata R, Ghigo E, Cavallo PP et al (2012) Mesenchymal stem cells-derived microvesicles modulate cellular immune response to islet antigen GAD in type 1 diabetes. 15th International & 14th European Congress of Endocrinology; BioScientificaGoogle Scholar
  151. 151.
    Tamura R, Uemoto S, Tabata Y (2016) Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Inflamm Regenerat 36(1):26CrossRefGoogle Scholar
  152. 152.
    Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK (2013) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23(11):1233–1244CrossRefGoogle Scholar
  153. 153.
    Cosenza S, Ruiz M, Maumus M, Jorgensen C, Noël D (2017) Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: role of mesenchymal stem cell-derived vesicles. Int J Mol Sci 18(4):889CrossRefPubMedCentralGoogle Scholar
  154. 154.
    Perez-Hernandez J, Redon J, Cortes R (2017) Extracellular vesicles as therapeutic agents in systemic lupus erythematosus. Int J Mol Sci 18(4):717CrossRefPubMedCentralGoogle Scholar
  155. 155.
    Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L et al (2017) Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep 7(1):4323CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Fariba Rad
    • 1
  • Mohammad Ghorbani
    • 2
  • Amaneh Mohammadi Roushandeh
    • 3
  • Mehryar Habibi Roudkenar
    • 4
    • 5
    Email author
  1. 1.Cellular and Molecular Research CenterYasuj University of Medical SciencesYasujIran
  2. 2.Department of Hematology and Blood BankingGonabad University of Medical SciencesGonabadIran
  3. 3.Medical Biotechnology Research Center, Paramedicine FacultyGuilan University of Medical SciencesRashtIran
  4. 4.Cardiovascular Disease Research Center, Department of Cardiology, School of MedicineHeshmat Hospital, Guilan University of Medical SciencesRashtIran
  5. 5.Neuroscience Research CenterGuilan University of Medical SciencesRashtIran

Personalised recommendations