Molecular Biology Reports

, Volume 46, Issue 1, pp 1189–1197 | Cite as

IL28RA inhibits human epidermal keratinocyte proliferation by inhibiting cell cycle progression

  • Xueli Yin
  • Shengquan Zhang
  • Bao Li
  • Yaohua ZhangEmail author
  • Xuejun ZhangEmail author
Original Article


Interleukin (IL) 28 receptor α (IL28RA) is a well-known candidate for psoriasis susceptibility based on previous genome-wide association study (GWAS) analysis. However, the function of IL28RA in psoriasis has not been elucidated. In the present study, the expression of IL28RA was significantly decreased in lesional tissues from patients with plaque psoriasis when compared with the expression observed in adjacent non-lesional tissues. In vitro studies further demonstrated that in the presence of IL-29, HaCaT keratinocytes with IL28RA knockdown exhibited a faster rate of proliferation than control cells, and an enhanced ratio of cells in the S and G2/M phase. By contrast, IL28RA overexpression inhibited the proliferation of HaCaT keratinocytes and caused cell cycle arrest at the G0/G1 phases. Western blot analysis revealed that knockdown of IL28RA upregulated cyclinB1 expression and downregulated cyclinE expression; the opposite results were observed in the IL28RA-overexpressing HaCaT cells. Finally, a mechanistic study revealed that IL28RA functions through the activation of the Janus kinase-signal transducer and activator of transcription signaling pathway to exert its anti-proliferative effect. These results suggested that weak expression of IL28RA may contribute to the pathogenesis of psoriasis and that IL28RA may be an effective drug target for the treatment of psoriasis. However, further in vivo studies are required.


Psoriasis Interleukin 28 receptor α Proliferation Interleukin-29 Signaling pathway 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 81130031 and 81602397) and the Natural Science Foundation of Shanghai (Grant No. 15ZR1405700). Grant Recipient: Xuejun Zhang, Yaohua Zhang.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Boehncke WH, Schön MP (2015) Psoriasis. Lancet 386(9997):983–994. CrossRefGoogle Scholar
  2. 2.
    Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361(5):496–509. CrossRefGoogle Scholar
  3. 3.
    Schön MP, Boehncke WH (2005) Psoriasis. N Engl. J Med 352(18):1899–1912. CrossRefGoogle Scholar
  4. 4.
    Griffiths CE, Barker JN (2007) Pathogenesis and clinical features of psoriasis. Lancet 370(9583):263–271. CrossRefGoogle Scholar
  5. 5.
    Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445(7130):866–873. CrossRefGoogle Scholar
  6. 6.
    Capon F, Bijlmakers MJ, Wolf N, Quaranta M, Huffmeier U, Allen M et al (2008) Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. Hum Mol Genet 17(13):1938–1945. CrossRefGoogle Scholar
  7. 7.
    Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J et al (2008) A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 4(3):e1000041. CrossRefGoogle Scholar
  8. 8.
    Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX et al (2009) Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet 41(2):205–210. CrossRefGoogle Scholar
  9. 9.
    Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D et al (2009) A Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41(2):199–204. CrossRefGoogle Scholar
  10. 10.
    Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH et al (2010) Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet42(11):1005–1009. CrossRefGoogle Scholar
  11. 11.
    Li Y, Cheng H, Zuo XB, Sheng YJ, Zhou FS, Tang XF et al (2013) Association analyses identifying two common susceptibility loci shared by psoriasis and systemic lupus erythematosus in the Chinese Han population. J Med Genet 50(12):812–818. CrossRefGoogle Scholar
  12. 12.
    Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH et al (2010) A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42(11):985–990. CrossRefGoogle Scholar
  13. 13.
    Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4(1):69–77. CrossRefGoogle Scholar
  14. 14.
    Witte K, Gruetz G, Volk HD, Looman AC, Asadullah K, Sterry W et al (2009) Despite IFN-λ receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines. Genes Immun 10(8):702–714. CrossRefGoogle Scholar
  15. 15.
    Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R (2007) Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the JAK-STAT pathway and the mitogen-activated protein kinases. J Virol 81(14):7749–7758. CrossRefGoogle Scholar
  16. 16.
    Zitzmann K, Brand S, Baehs S, Göke B, Meinecke J, Spöttl G et al (2006) Novel interferon-lambdas induce antiproliferative effects in neuroendocrine tumor cells. Biochem Biophys Res Commun 344(4):1334–1341. CrossRefGoogle Scholar
  17. 17.
    Duong FH, Trincucci G, Boldanova T, Calabrese D, Campana B, Krol I et al (2014) IFN-λ receptor 1 expression is induced in chronic hepatitis C and correlates with the IFN-λ3 genotype and with nonresponsiveness to IFN-α therapies. J Exp Med 211(5):857–868. CrossRefGoogle Scholar
  18. 18.
    Souza-Fonseca-Guimaraes F, Young A, Mittal D, Martinet L, Bruedigam C, Takeda K et al (2015) NK cells require IL-28R for optimal in vivo activity. Proc Natl Acad Sci USA 112(18):E2376–E7684. CrossRefGoogle Scholar
  19. 19.
    Yang L, Luo Y, Wei J, He S (2010) Integrative genomic analyses on IL28RA, the common receptor of interferon-lambda1, -lambda2 and -lambda3. Int J Mol Med 25(5):807–812Google Scholar
  20. 20.
    Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renauld JC (2003) Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochemistry J370(Pt 2):391–396. CrossRefGoogle Scholar
  21. 21.
    Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM et al (2005) IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Am J Physiol Gastrointest Liver Physiol 289(5):G960–G968. CrossRefGoogle Scholar
  22. 22.
    Stephen GM, Faruk S, Anthony JS, Ana LRW, Darren PB, Raymond PD et al (2008) IFN-α and IFN-λ differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther 7(7):1109–1115CrossRefGoogle Scholar
  23. 23.
    Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4(1):63–68. CrossRefGoogle Scholar
  24. 24.
    Syedbasha M, Egli A (2017) Interferon lambda: modulating immunity in infectious Diseases. Front Immunol 8:119. CrossRefGoogle Scholar
  25. 25.
    Wolk K, Witte K, Witte E, Raftery M, Kokolakis G, Philipp S et al (2013) IL-29 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci Transl Med 5(204):204ra129. CrossRefGoogle Scholar
  26. 26.
    Reemann P, Reimann E, Suutre S, Paavo M, Loite U, Porosaar O et al (2014) Expression of class II cytokine genes in children’s skin. Acta Derm Venereol 94(4):386–392. CrossRefGoogle Scholar
  27. 27.
    Zachary JM, Eugenia M, Wei L, Alexander Z, Sergei VK, Alexander W (2010) Crystal structure of human interferon-λ1 in complex with its high-affinity receptor interferon-λR1. J Mol Biol 404(4):650–664. CrossRefGoogle Scholar
  28. 28.
    Dumoutier L, Tounsi A, Michiels T, Sommereyns C, Kotenko SV, Renauld JC (2004) Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-λ. J Biol Chem 279(31):32269–32274. CrossRefGoogle Scholar
  29. 29.
    Guenterberg KD, Grignol VP, Raig ET, Zimmerer JM, Chan AN, Blaskovits FM et al (2010) Interleukin-29 binds to melanoma cells inducing Jak-STAT signal transduction and apoptosis. Mol Cancer Ther 9(2):510–520. CrossRefGoogle Scholar
  30. 30.
    Lowes MA, Suárez-Fariñas M, Krueger JG (2014) Immunology of psoriasis. Annu Rev Immunol 32:227–255. CrossRefGoogle Scholar
  31. 31.
    Yao Y, Richman L, Morehouse C, de los Reyes M, Higgs BW, Boutrin A et al (2008)Type I interferon: potential therapeutic target for psoriasis? PLoS ONE 3(7):e2737. CrossRefGoogle Scholar
  32. 32.
    Zhang LJ, Sen GL, Ward NL, Johnston A, Chun K, Chen Y et al (2016) Antimicrobial peptide LL37 and MAVS signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity 45(1):119–130. CrossRefGoogle Scholar
  33. 33.
    Witte E, Kokolakis G, Witte K, Warszawska K, Friedrich M, Christou D et al (2016) Interleukin-29 induces epithelial production of CXCR3A ligands and T-cellinfiltration. J Mol Med 94(4):391–400. CrossRefGoogle Scholar
  34. 34.
    Hsu YA, Huang CC, Kung YJ, Lin HJ, Chang CY, Lee KR et al (2016) The anti-proliferative effects of type IIFN involve STAT6-mediated regulation of SP1 and BCL6. Cancer Lett 375(2):303–312. CrossRefGoogle Scholar
  35. 35.
    Bai L, Fang H, Xia S, Zhang R, Li L, Ochando J, Xu J, Ding Y (2018) STAT1 activation represses IL-22 gene expression and psoriasis pathogenesis. Biochem Biophys Res Commun 501(2):563–569. CrossRefGoogle Scholar
  36. 36.
    Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54. CrossRefGoogle Scholar
  37. 37.
    Wellbrock C, Weisser C, Hassel JC, Fischer P, Becker J, Vetter CS et al (2005) STAT5 contributes to interferon resistance of melanoma cells. Curr Biol 15(18):1629–1639. CrossRefGoogle Scholar
  38. 38.
    Huang S, Bucana CD, Van Arsdall M et al (2002) Stat1 negatively regulates angiogenesis, tumorigenicity and metastasis of tumor cells. Oncogene 21(16):2504–2512CrossRefGoogle Scholar
  39. 39.
    Hong S, Laimins LA (2013) The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog 9(4):e1003295. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Dermatology and Department of Dermatology, The First Affiliated HospitalAnhui Medical UniversityHefeiChina
  2. 2.Key Laboratory of Dermatology, Anhui Medical UniversityMinistry of EducationHefeiChina
  3. 3.Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
  4. 4.Institute of Dermatology, Huashan HospitalFudan UniversityShanghaiChina

Personalised recommendations