Advertisement

Molecular Biology Reports

, Volume 46, Issue 1, pp 1107–1115 | Cite as

High accumulation of tilianin in in-vitro cultures of Agastache mexicana and its potential vasorelaxant action

  • Gabriela Carmona-Castro
  • Samuel Estrada-Soto
  • Jesús Arellano-García
  • Luis Arias-Duran
  • Susana Valencia-Díaz
  • Irene Perea-ArangoEmail author
Original Article

Abstract

Agastache mexicana has gained importance during the last decade as a natural source of bioactive compounds, mainly due to the antidiabetic, antihyperlipidemic, and vasorelaxant effects derived from its flavonoids, particularly tilianin. The goal of this work was to evaluate the production of tilianin during the in-vitro process of morphogenesis leading to plant regeneration and to investigate the vasorelaxant activity of its methanolic extracts. The cultures were established from nodal segments and leaf explants, inoculated on Murashige and Skoog (MS) media supplemented with various concentrations of benzyl aminopurine (BAP) alone or in combination with 2,4-Dichlorophenoxyacetic acid (2,4-D). Callus inductions were obtained in all treatments from both types of explants, but the presence of auxin was essential. Maximal shoot multiplication and elongation was achieved with 0.1 mg/l 2,4-D and 1.0 mg/l BAP from nodal- segment explants. Shoots were rooted in 75% MS medium and the plantlets were transferred to a greenhouse with 33% average survival. Analysis of tilianin production in methanolic extracts from calli (0.15–2.01 ± 0.06 mg/g dry weight), shoots (4.45 ± 0.01 mg/g DW), and whole plants (9.77 ± 0.02 mg/g DW) derived from in-vitro cultured nodal segments reveals that tilianin accumulation is associated with high cell differentiation and morphogenetic response to the plant-growth regulators. All of the extracts showed strong vasorelaxant activity, as compared to those of wild plant extracts. These results indicate that plant-tissue cultures of A. mexicana possess vast potential as a source of tilianin and other bioactive compounds.

Keywords

Callus  Flavonoid  Hyperhydricity  Nodal segments  Tilianin  Toronjil 

Notes

Acknowledgements

G. Castro-Carmona is grateful to CONACYT for a postgraduate scholarship (226330).

References

  1. 1.
    Estrada-Reyes R, Hernández EA, García-Argáez A, Hernández MS, Linares E, Bye R, Martínez-Vázquez M (2004) Comparative chemical composition of Agastache mexicana subsp. mexicana and A. mexicana subsp. xolocotziana. Biochem Syst Ecol 32(7):685–694CrossRefGoogle Scholar
  2. 2.
    Estrada-Reyes R, López-Rubalcava C, Ferreyra-Cruz OA, Dorantes-Barrón AM, Heinze G, Aguilar JM, Martínez-Vázquez M (2014) Central nervous system effects and chemical composition of two subspecies of Agastache mexicana; an ethnomedicine of Mexico. J Ethnopharmacol 153(1):98–110CrossRefPubMedGoogle Scholar
  3. 3.
    Navarrete A, Ávila-Rosas N, Majín-León M, Balderas-López JL, Alfaro-Romero A, Tavares-Carvalho JC (2017) Mechanism of action of relaxant effect of Agastache mexicana ssp. mexicana essential oil in guinea-pig trachea smooth muscle. Pharm Biol 55(1):96–100CrossRefPubMedGoogle Scholar
  4. 4.
    Nijveldt RJ, Van Nood ELS, Van Hoorn DE, Boelens PG, Van Norren K, Van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425CrossRefPubMedGoogle Scholar
  5. 5.
    Hernández-Abreu O, Castillo-España P, León-Rivera I, Ibarra-Barajas M, Villalobos-Molina R, González-Christen J, Estrada-Soto S (2009) Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. Biochem Pharmacol 78(1):54–61CrossRefPubMedGoogle Scholar
  6. 6.
    Ventura-Martínez R, Rodríguez R, González-Trujano ME, Ángeles-López GE, Déciga-Campos M, Gómez C (2017) Spasmogenic and spasmolytic activities of Agastache mexicana ssp. mexicana and A. mexicana ssp. xolocotziana methanolic extracts on the guinea pig ileum. J Ethnopharmacol 196:58–65CrossRefPubMedGoogle Scholar
  7. 7.
    García-Díaz JA, Navarrete-Vázquez G, García-Jiménez S, Hidalgo-Figueroa S, Almanza-Pérez JC, Alarcón-Aguilar FJ, Estrada-Soto S (2016) Antidiabetic, antihyperlipidemic and anti-inflammatory effects of tilianin in streptozotocin-nicotinamide diabetic rats. Biomed Pharmacother 83:667–675CrossRefPubMedGoogle Scholar
  8. 8.
    Zielińska S, Matkowski A (2014) Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev 13(2):391–416CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu J, Chen L, Cai S, Wang Q (2012) Semisynthesis of apigenin and acacetin-7-O-β-D-glycosides from naringin and their cytotoxic activities. Carbohydr Res 357:41–46CrossRefPubMedGoogle Scholar
  10. 10.
    Flores-Flores A, Hernández-Abreu O, Rios MY, León-Rivera I, Aguilar-Guadarrama B, Castillo-España P, Perea-Arango I, Estrada-Soto S (2016) Vasorelaxant mode of action of dichloromethane-soluble extract from Agastache mexicana and its main bioactive compounds. Pharm Biol 54:2807–2813CrossRefPubMedGoogle Scholar
  11. 11.
    Ramírez-Espinosa JJ, Rios MY, López-Martínez S, López-Vallejo F, Medina-Franco JL, Paoli P, Camici G, Navarrete-Vázquez G, Ortiz-Andrade R, Estrada-Soto S (2011) Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: in vitro, in silico, and in vivo approaches. Eur J Med Chem 46:2243–2251CrossRefPubMedGoogle Scholar
  12. 12.
    Cui P, Dou TY, Li SY, Lu JX, Zou LW, Wang P, Ge GB (2016) Highly selective and efficient biotransformation of linarin to produce tilianin by naringinase. Biotechnol Lett 38(8):1367–1373CrossRefPubMedGoogle Scholar
  13. 13.
    Xing B, Yang D, Liu L, Han R, Sun Y, Liang Z (2018) Phenolic acid production is more effectively enhanced than tanshinone production by methyl jasmonate in Salvia miltiorrhiza hairy roots. Plant Cell Tissue Organ Cult 134(1):119–129CrossRefGoogle Scholar
  14. 14.
    Sarkate A, Banerjee S, Mir JI, Roy P, Sircar D (2017) Antioxidant and cytotoxic activity of bioactive phenolic metabolites isolated from the yeast-extract treated cell culture of apple. Plant Cell Tissue Organ Cult 130(3):641–649CrossRefGoogle Scholar
  15. 15.
    Kwiecień I, Smolin J, Beerhues L, Ekiert H (2018) The impact of media composition on production of flavonoids in agitated shoot cultures of the three Hypericum perforatum L. cultivars ‘Elixir,’ ‘Helos,’and ‘Topas’. In Vitro Cell Dev Biol Plant 54(3):332–340CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim YB, Kim JK, Uddin MR, Xu H, Park WT, Tuan PA, Park SU (2013) Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS ONE 8(5):e64199CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moharami L, Hosseini B, Ravandi EG, Jafari M (2014) Effects of plant growth regulators and explant types on in vitro direct plant regeneration of Agastache foeniculum, an important medicinal plant. In Vitro Cell Dev Biol Plant 50(6):707–711CrossRefGoogle Scholar
  18. 18.
    Amoo SO, Van Staden J (2013) Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micropropagated Huernia hystrix. Plant Cell Tissue Organ Cult 112(2):249–256CrossRefGoogle Scholar
  19. 19.
    Pourebad N, Motafakkerazad R, Kosari-Nasab M, Akhtar NF, Movafeghi A (2015) The influence of TDZ concentrations on in vitro growth and production of secondary metabolites by the shoot and callus culture of Lallemantia iberica. Plant Cell Tissue Organ Cult 122(2):331–339CrossRefGoogle Scholar
  20. 20.
    Tepe B, Sokmen A (2007) Production and optimisation of rosmarinic acid by Satureja hortensis L. callus cultures. Nat Prod Res 21(13):1133–1144CrossRefPubMedGoogle Scholar
  21. 21.
    Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731CrossRefGoogle Scholar
  22. 22.
    de Sousa-Machado IB, Felippe T, García R, Pacheco G, Moreira D, Mansur E (2018) Total phenolics, resveratrol content and antioxidant activity of seeds and calluses of pinto peanut (Arachis pintoi Krapov. & WC Greg.). Plant Cell Tissue Organ Cult 134(3):491–502CrossRefGoogle Scholar
  23. 23.
    Lee SY, Xu H, Kim YK, Park SU (2008) Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J Microbiol Biotechnol 24(7):969–972CrossRefGoogle Scholar
  24. 24.
    SAGARPA Norma Oficial Mexicana. NOM-062-ZOO-1999. Laboratory animals and the Official Mexican Standard. Available from: http://www.fmvz.unam.mx/fmvz/principal/archivos/062ZOO.PDF. Accessed July 30, 2018
  25. 25.
    Phua QY, Subramaniam S, Lim V, Chew BL (2018) The establishment of cell suspension culture of sabah snake grass (Clinacanthus nutans (Burm. F.) Lindau). Vitro Cell Dev Biol Plant 54:413–422CrossRefGoogle Scholar
  26. 26.
    Jiménez VM, Bangerth F (2001) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111(3):389–395CrossRefPubMedGoogle Scholar
  27. 27.
    George EF, Hall MA, De Klerk GJ (2008) Plant growth regulators I: introduction; auxins, their analogues and inhibitors. In: George EF (ed) Plant propagation by tissue culture. Springer, Dordrecht, pp 175–204Google Scholar
  28. 28.
    Kim HK, Oh SR, Lee HK, Huh H (2001) Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa O. Kuntze. Biotechnol Lett 23(1):55–60CrossRefGoogle Scholar
  29. 29.
    Xu H, Kim YK, Jin X, Lee SY, Park SU (2013) Rosmarinic acid biosynthesis in callus and cell cultures of Agastache rugosa Kuntze. J Med Plants Res 2(9):237–241Google Scholar
  30. 30.
    Kayani HA, Khan S, Naz SHEEBA, Chaudhary MI (2013) Micropropagation of Agastache anisata using nodal segments as explants and cytotoxic activity of its methanolic extracts. Pak J Bot 45(6):2105–2109Google Scholar
  31. 31.
    Park WT, Arasu MV, Al-Dhabi NA, Yeo SK, Jeon J, Park JS, Park SU (2016) Yeast extract and silver nitrate induce the expression of phenylpropanoid biosynthetic genes and induce the accumulation of rosmarinic acid in Agastache rugosa cell culture. Molecules 21(4):426CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nordine A, Tlemcani CR, El Meskaoui A (2014) Regeneration of plants through somatic embryogenesis in Thymus hyemalis Lange, a potential medicinal and aromatic plant. Vitro Cell Dev Biol Plant 50(1):19–25CrossRefGoogle Scholar
  33. 33.
    Passinho-Soares HC, Meira PR, David JP, Mesquita PR, Vale AED, de M Rodrigues, de Pereira F, de Santana PA, de Oliviera RJ, de Andrade FS, David JB J M (2013) Volatile organic compounds obtained by in vitro callus cultivation of plectranthus ornatus Codd. (Lamiaceae). Molecules 18(9):10320–10333CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mozafari AA, Vafaee Y, Karami E (2015) In vitro propagation and conservation of Satureja avromanica Maroofi—an indigenous threatened medicinal plant of Iran. Physiol Mol Biol Plants 21(3):433–439CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zuzarte MR, Dinis AM, Cavaleiro C, Salgueiro LR, Canhoto JM (2010) Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Ind Crops Prod 32(3):580–587CrossRefGoogle Scholar
  36. 36.
    Makowczyńska J, Sliwinska E, Kalemba D, Piątczak E, Wysokińska H (2016) In vitro propagation, DNA content and essential oil composition of Teucrium scorodonia L. ssp. scorodonia. Plant Cell Tissue Organ Cult 127(1):1–13CrossRefGoogle Scholar
  37. 37.
    Bekircan T, Yaşar A, Yıldırım S, Sökmen M, Sökmen A (2018) Effect of cytokinins on in vitro multiplication, volatiles composition and rosmarinic acid content of Thymus leucotrichus Hal. shoots. 3 Biotech 8(3):180CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zielińska S, Piątczak E, Kalemba D, Matkowski A (2011) Influence of plant growth regulators on volatiles produced by in vitro grown shoots of Agastache rugosa (Fischer & CA Meyer) O. Kuntze. Plant Cell Tissue Organ Cult 107(1):161CrossRefGoogle Scholar
  39. 39.
    Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 5(165):977–982CrossRefGoogle Scholar
  40. 40.
    Sharada M, Ahuja A, Suri KA, Vij SP, Khajuria RK, Verma V, Kumar A (2007) Withanolide production by in vitro cultures of Withania somnifera and its association with differentiation. Biol Plant 51(1):161–164CrossRefGoogle Scholar
  41. 41.
    Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3(13):1222–1239Google Scholar
  42. 42.
    Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. In: Advances in botanical research, vol 25. Academic Press, London, pp 141–169Google Scholar
  43. 43.
    Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11(5):316–321Google Scholar
  44. 44.
    Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54(4):702–711CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao JL, Pan JS, Guan Y, Zhang WW, Bie BB, Wang YL, Cai R (2015) Micro trichome as a class I homeodomain leucine zipper gene regulates multicellular trichome development in Cucumis sativus. J Integr Plant Biol 57(11):925–935CrossRefPubMedGoogle Scholar
  46. 46.
    Dastmalchi K, Dorman HD, Koşar M, Hiltunen R (2007) Chemical composition and in vitro antioxidant evaluation of a water-soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT—Food Sci Technol 40(2):239–248CrossRefGoogle Scholar
  47. 47.
    Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184CrossRefPubMedGoogle Scholar
  48. 48.
    Wu Y, Li X, Yang D, Hu X, Zhang JF (2013) Isolation and identification of the water-soluble components of Pogostemon cablin. In: Zhang J (ed) Chemical engineering III. CRC Press, Taylor &Francis Group, Beijing, pp 71–76CrossRefGoogle Scholar
  49. 49.
    Tuan PA, Park WT, Xu H, Park NI, Park SU (2012) Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J Agric Food Chem 60(23):5945–5951CrossRefPubMedGoogle Scholar
  50. 50.
    Hernández-Abreu O, Durán-Gómez L, Best-Brown R, Villalobos-Molina R, Rivera-Leyva J, Estrada-Soto S (2011) Validated liquid chromatographic method and analysis of content of tilianin on several extracts obtained from Agastache mexicana and its correlation with vasorelaxant effect. J Ethnopharmacol 138(2):487–491CrossRefPubMedGoogle Scholar
  51. 51.
    Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248(1):1–18CrossRefPubMedGoogle Scholar
  52. 52.
    Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. PNAS 101(21):8039–8044CrossRefPubMedGoogle Scholar
  53. 53.
    Bakir Y, Eldem V, Zararsiz G, Unver T (2016) Global transcriptome analysis reveals differences in gene expression patterns between nonhyperhydric and hyperhydric peach leaves. Plant Genome 9(2).  https://doi.org/10.3835/plantgenome2015.09.0080
  54. 54.
    Gao H, Li J, Ji H, An L, Xia X (2018) Hyperhydricity-induced ultrastructural and physiological changes in blueberry (vaccinium spp.). Plant Cell Tissue Organ Cult 133(1):65–76CrossRefGoogle Scholar
  55. 55.
    Sivanesan I, Saini RK, Kim DH (2016) Bioactive compounds in hyperhydric and normal micropropagated shoots of Aronia melanocarpa (michx.) Elliott. Ind Crops Prod 83:31–38CrossRefGoogle Scholar
  56. 56.
    Chakrabarty D, Park SY, Ali MB, Shin KS, Paek KY (2006) Hyperhydricity in apple: ultrastructural and physiological aspects. Tree Physiol 26(3):377–388CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
  2. 2.Facultad de FarmaciaUniversidad Autónoma del Estado de MorelosCuernavacaMéxico

Personalised recommendations