Differential expression of miRNAs related to angiogenesis and adipogenesis in subcutaneous fat of obese and nonobese women

  • Aline S. GasparottoEmail author
  • Diego O. Borges
  • Marina G. M. Sassi
  • Adriana Milani
  • Darwin L. Rech
  • Marcia Terres
  • Pedro B. Ely
  • Mauricio J. Ramos
  • Nelson G. Meihnardt
  • Vanessa S. Mattevi
Original Article


To disclose the mechanisms surrounding obesity, we selected microRNAs (miRNAs) that target genes involved in adipogenesis, angiogenesis, and inflammation and compared their expression levels in the subcutaneous adipose tissue of 40 obese and nonobese women. Mature miRNAs were extracted from subcutaneous adipose tissue samples that were collected during surgery and quantified by real-time polymerase chain reaction. miR-16 was overexpressed in the nonobese group (n-expression ratio = − 151.1; P < 0.001). Furthermore, the expression levels of two other miRNAs were significantly correlated with waist circumference in nonobese women (miR-27b, r = 0.453; P = 0.027 and miR-424-5p, r = 0.502, P = 0.014). Central and total subcutaneous adipose tissue thicknesses were correlated with miR-424-5p levels (r = 0.506, P = 0.034 and r = 0.475, P = 0.046, respectively) in the nonobese group. In the obese group, miR-424-5p expression was correlated with body mass index (r = 0.582, P = 0.018). miR-16 and miR-424 have shown correlations with body-fat-mass-related parameters. Because these miRNAs have vascular endothelial growth factor (VEGF) and its receptors as target genes, they may be involved in the alterations of angiogenesis observed in obesity. In addition, higher levels of miR-27 and miR-424 were correlated with higher fat depot measurements in nonobese women. These results highlight the importance of miRNA expression in subcutaneous adipose tissue and encourage further investigation of miRNAs as prognostic markers.


Adipose tissue Obesity microRNA miR-16 miR-424 miR-27 



This work has been financially supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil - 471437/2012-3) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil - 12/2226-9 and 1153-2551/13-9). A.S.G. and D.O.B. received scholarships from the REUNI program from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study complied with the ethical principles outlined in the Declaration of Helsinki. All enrolled participants were informed and signed informed consent at the beginning of their participation in the study.


  1. 1.
    Ogden CL, Carroll MD, Kit BK, Flegal KM (2014) Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311(8):806–814. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Invest 117(9):2362–2368CrossRefGoogle Scholar
  3. 3.
    Suganami T, Ogawa Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88(1):33–39CrossRefGoogle Scholar
  4. 4.
    Enlund E, Fischer S, Handrick R, Otte K, Debatin KM, Wabitsch M, Fischer-Posovszky P (2014) Establishment of lipofection for studying miRNA function in human adipocytes. PLoS ONE 9(5):e98023. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brandao BB, Guerra BA, Mori MA (2017) Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 12:82–102. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Alexander R, Lodish H, Sun L (2011) MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin Therapeutic Targets 15(5):623–636. CrossRefGoogle Scholar
  7. 7.
    Ono K (2011) MicroRNA links obesity and impaired glucose metabolism. Cell Res 21(6):864–866. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chang RC, Ying W, Bazer FW, Zhou B (2014) MicroRNAs control macrophage formation and activation: the inflammatory link between obesity and cardiovascular diseases. Cells 3(3):702–712. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840CrossRefGoogle Scholar
  10. 10.
    Locke AE, Kahali B, Berndt SI et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197–206. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shungin D, Winkler TW, Croteau-Chonka DC et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518(7538):187–196. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9(2):107–115CrossRefGoogle Scholar
  13. 13.
    Heneghan HM, Miller N, Kerin MJ (2010) Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 11(5):354–361. CrossRefPubMedGoogle Scholar
  14. 14.
    Gray DS, Bray GA, Bauer M, Kaplan K, Gemayel N, Wood R, Greenway F, Kirk S (1990) Skinfold thickness measurements in obese subjects. Am J Clin Nutr 51(4):571–577CrossRefGoogle Scholar
  15. 15.
    Hastings ES, Anding RH, Middleman AB (2011) Correlation of anthropometric measures among obese and severely obese adolescents and young adults. ICAN: Infant, Child, & Adolescent Nutrition 3(3):171–174. CrossRefGoogle Scholar
  16. 16.
    TargetScanHuman 6.2. Whitehead Institute for Biomedical Research (2006) Whitehead institute for biomedical research. Accessed 20 April 2013
  17. 17.
    Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138. CrossRefPubMedGoogle Scholar
  18. 18.
    Lagana A, Forte S, Giudice A, Arena MR, Puglisi PL, Giugno R, Pulvirenti A, Shasha D, Ferro A (2009) miRo: a miRNA knowledge base. Database 2009:bap008. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fiedler J, Thum T (2011) MicroRNAs looping around angiogenesis. Arterioscler Thromb Vasc Biol 31(11):2367–2368. CrossRefPubMedGoogle Scholar
  20. 20.
    Xu G, Ji C, Shi C, Fu H, Zhu L, Zhu L, Xu L, Chen L, Feng Y, Zhao Y, Guo X (2013) Modulation of hsa-miR-26b levels following adipokine stimulation. Mol Biol Rep 40(5):3577–3582. CrossRefPubMedGoogle Scholar
  21. 21.
    Song G, Xu G, Ji C, Shi C, Shen Y, Chen L, Zhu L, Yang L, Zhao Y, Guo X (2014) The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 533(2):481–487. CrossRefPubMedGoogle Scholar
  22. 22.
    Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276(8):2348–2358CrossRefGoogle Scholar
  23. 23.
    Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, Lee YS, Kim JB (2010) miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 392(3):323–328. CrossRefPubMedGoogle Scholar
  24. 24.
    Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, Chen YE, Liu D (2013) MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem 288(48):34394–34402. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390(2):247–251. CrossRefPubMedGoogle Scholar
  26. 26.
    Smits M, Wurdinger T, van het Hof B, Drexhage JA, Geerts D, Wesseling P, Noske DP, Vandertop WP, de Vries HE, Reijerkerk A (2012) Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J 26(6):2639–2647. CrossRefPubMedGoogle Scholar
  27. 27.
    He J, Jing Y, Li W, Qian X, Xu Q, Li FS, Liu LZ, Jiang BH, Jiang Y (2013) Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. PLoS ONE 8(2):e56647. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kloting N, Berthold S, Kovacs P, Schon MR, Fasshauer M, Ruschke K, Stumvoll M, Bluher M (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE 4(3):e4699CrossRefGoogle Scholar
  29. 29.
    Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, Alford A, Waters KM (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23(11):1876–1884. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H (2010) Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep 24(5):1217–1223PubMedGoogle Scholar
  31. 31.
    Zhou L, Qi X, Potashkin JA, Abdul-Karim FW, Gorodeski GI (2008) MicroRNAs miR-186 and miR-150 down-regulate expression of the pro-apoptotic purinergic P2 × 7 receptor by activation of instability sites at the 3′-untranslated region of the gene that decrease steady-state levels of the transcript. J Biol Chem 283(42):28274–28286. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H, Li H, Wang G, Evans AR, Safe S, Wu C, Zhou B (2012) A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125(23):2892–2903. CrossRefPubMedGoogle Scholar
  33. 33.
    Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420. CrossRefPubMedGoogle Scholar
  34. 34.
    Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castano I, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L (2010) miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 18(11):2170–2176CrossRefGoogle Scholar
  35. 35.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. CrossRefPubMedGoogle Scholar
  36. 36.
    Abramson JH (2011) WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol Perspect Innov 8(1):1. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRefGoogle Scholar
  38. 38.
    Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1:e116. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernandez-Hernando C, Suarez Y (2011) MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol 31(11):2595–2606. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19(10):2003–2012. CrossRefPubMedGoogle Scholar
  41. 41.
    Hubal MJ, Nadler EP, Ferrante SC, Barberio MD, Suh JH, Wang J, Dohm GL, Pories WJ, Mietus-Snyder M, Freishtat RJ (2017) Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring) 25(1):102–110. CrossRefGoogle Scholar
  42. 42.
    Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93(1):1–21. CrossRefPubMedGoogle Scholar
  43. 43.
    Saad A, Zhu XY, Herrmann S, Hickson L, Tang H, Dietz AB, van Wijnen AJ, Lerman L, Textor S (2016) Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia. Stem Cell Res Ther 7(1):128. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E (2009) miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 69(13):5553–5559. CrossRefPubMedGoogle Scholar
  45. 45.
    Elias I, Franckhauser S, Bosch F (2013) New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte 2(2):109–112. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Fernandez-Real JM (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 5(2):e9022CrossRefGoogle Scholar
  47. 47.
    Xie H, Lim B, Lodish HF (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5):1050–1057. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Heneghan HM, Miller N, McAnena OJ, O’Brien T, Kerin MJ (2011) Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab 96(5):E846–E850. CrossRefPubMedGoogle Scholar
  49. 49.
    Neville MJ, Collins JM, Gloyn AL, McCarthy MI, Karpe F (2011) Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 19(4):888–892. CrossRefGoogle Scholar
  50. 50.
    Zhang D, Shi Z, Li M, Mi J (2014) Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis. Cell Death Disease 5:e1301. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu D, Lin Y, Kang T, Huang B, Xu W, Garcia-Barrio M, Olatinwo M, Matthews R, Chen YE, Thompson WE (2012) Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS ONE 7(3):e34315. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Estep M, Armistead D, Hossain N, Elarainy H, Goodman Z, Baranova A, Chandhoke V, Younossi ZM (2010) Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 32(3):487–497CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Aline S. Gasparotto
    • 1
    Email author return OK on get
  • Diego O. Borges
    • 1
  • Marina G. M. Sassi
    • 1
  • Adriana Milani
    • 2
  • Darwin L. Rech
    • 2
  • Marcia Terres
    • 2
  • Pedro B. Ely
    • 2
  • Mauricio J. Ramos
    • 3
  • Nelson G. Meihnardt
    • 3
  • Vanessa S. Mattevi
    • 1
  1. 1.Programa de Pós-graduação em Ciências da SaúdeUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  2. 2.Irmandade Santa Casa de Misericórdia de Porto AlegrePorto AlegreBrazil
  3. 3.Hospital Nossa Senhora da ConceiçãoPorto AlegreBrazil

Personalised recommendations