Advertisement

Investigation of possible effects of microRNAs involved in regulation of lipid metabolism in the pathogenesis of atherosclerosis

  • Aysegul GorurEmail author
  • Ahmet Celik
  • Didem Derici Yildirim
  • Ahmet Gundes
  • Lulufer Tamer
Original Article

Abstract

Due to being stable in the circulatory system plasma miRNAs have been detected in various diseases including coronary artery disease (CAD) which is the major cause of mortality and morbidity worldwide. Atherosclerosis is the major cause of CAD. The first and most important event in the progression of atherosclerosis is endothelial dysfunction and accumulation of the lipids in the arterial wall. Recent studies have shown that different expression levels of lipid metabolism-related miRNAs associated with the pathogenesis of atherosclerosis. Therefore, in this current study, we aimed to investigate the possible effects of lipid metabolism-related miRNAs in plasma of patients with CAD. miRNA analysis was performed by high throughput quantitative PCR method using RNA samples isolated from 46 patients with CAD and 43 non-CAD or control. Data were analyzed using SPSS software version 17 and GeneGlobe Data Analysis Center by Qiagen. Among 40 miRNAs, 4 miRNAs were markedly up-regulated while 4 miRNAs were down-regulated in patients with CAD compared to the control group. The results have shown that, hsa-mir-144-3p, hsa-miR-222-5p and hsa-miR-133a-5p were statistically different in the patient with CAD compared to the control (p = 0.040, 0.030 and 0.005 respectively). Increased expression of hsa-mir-144-3p, hsa-miR-222-5p and hsa-miR-133a-5p would have associated with presence of the CAD. Furthermore, we suggested that these miRNAs might have been useful markers for early detection of the CAD.

Keywords

Coronary artery disease Atherosclerosis MiRNA Marker Early detection Lipid metabolism 

Abbreviations

CAD

Coronary artery disease

LDL

Low-density lipoprotein

HDL

High-density lipoprotein

3′ UTR

3′ untranslated region

SREBP

Sterol regulatory element binding protein

LXR

Liver X receptor;

FXR

Farnesoid X receptor

mRNA

messenger RNA

miRNA

microRNA

qPCR

quantitative polymerase chain reaction

CI

Confidence interval

OR

Odds ratio

ABC

ATP-binding cassette

EPCs

Endothelial progenitor cells

ECs

Endothelial cells

LLT

Lipid lowering therapy

Notes

Acknowledgements

Here we would like to express our special thanks to Dr. Kahraman Tanriverdi for anaylazing our data and all the subjects who participated in this study. I also would like to express my special thanks of gratitude to Scientific Research Projects of Mersin University for supporting this project.

Author Contributions

Dr. Aysegul Gorur and Dr. Lulufer Tamer designed the study; Dr. Aysegul Gorur performed the study, collected the clinical data and samples, analyzed data and wrote the manuscript; Dr. Lulufer Tamer and Dr. Ahmet Celik critically revised the manuscript; Cardiologists Dr. Ahmet Gundes and and Dr. Ahmet Celik performed coronary angiography and diagnosed patients. Dr. Didem Derici Yildirim performed the statistical analyses of the clinical data.

Funding

This work was supported by Department of Scientific Research Projects of Mersin University, (Project No: 2015-TP3-1185).

Compliance with Ethical Standards

Conflict of interest

The authors of this paper have no conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

Supplementary material

11033_2018_4547_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 41 KB)
11033_2018_4547_MOESM2_ESM.docx (11 kb)
Supplementary material 2 (DOCX 11 KB)

References

  1. 1.
    Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695CrossRefGoogle Scholar
  2. 2.
    Feinberg MW, Moore KJ (2016) MicroRNA regulation of atherosclerosis. Circ Res 118(4):703–720CrossRefGoogle Scholar
  3. 3.
    Ballantyne C, Arroll B, Shepherd J (2005) Lipids and CVD management: towards a global consensus. Eur Heart J 26(21):2224–2231CrossRefGoogle Scholar
  4. 4.
    Montasir AA, Sadik MH (2012) Acute myocardial infarction in a 28 year man with familial hypercholesterolemia. Indian J Med Sci 66:78–81CrossRefGoogle Scholar
  5. 5.
    Goldberg AC, Hopkins PN, Toth PP et al (2011) Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol 5;(3):1–8CrossRefGoogle Scholar
  6. 6.
    Ginter E, Simko V (2013) New promising potential in fighting atherosclerosis: HDL and reverse cholesterol transport. Bratisl Lek Listy 114:172–176PubMedGoogle Scholar
  7. 7.
    Peluso I, Morabito G, Urban L, Ioannone F, Serafini M (2012) Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets 12:351–360CrossRefGoogle Scholar
  8. 8.
    Mirjana D, Edita S, Biljana V, Suncica KD, Velibor C (2006) Lipids and Atherosclerosis. Jugoslov Med Biohem 25(4):325–333CrossRefGoogle Scholar
  9. 9.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 23(2):215–233 136(CrossRefGoogle Scholar
  10. 10.
    Fernandez-Hernando C, Suarez Y, Rayner KJ, Moore KJ (2011) MicroRNAs in lipid metabolism. Curr Opin Lipidol 22(2):86–92CrossRefGoogle Scholar
  11. 11.
    Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, Papaioanou S, Tousoulis D (2015) The role of microRNAs in coronary artery disease: from pathophysiology to diagnosis and treatment. Atherosclerosis 241:624–633CrossRefGoogle Scholar
  12. 12.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3;(6):1101–1108CrossRefGoogle Scholar
  16. 16.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25;(4):402–408CrossRefGoogle Scholar
  17. 17.
    Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C (2010) microRNAs and cholesterol metabolism. Trends Endocrinol Metab 21(12):699–706CrossRefGoogle Scholar
  18. 18.
    Rayner KJ, Fernandez-Hernando C, Moore KJ (2012) MicroRNAs regulating lipid metabolism in atherogenesis. Thromb Haemost 107(4):642–647CrossRefGoogle Scholar
  19. 19.
    Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ (2011) MicroRNAs in lipid metabolism. Curr Opin Lipidol 22(2):86–92CrossRefGoogle Scholar
  20. 20.
    Ramírez CM, Rotllan N, Vlassov AV, Dávalos A, Li M, Goedeke L, Aranda JF, Cirera-Salinas D, Araldi E, Salerno A, Wanschel A, Zavadil J, Castrillo A, Kim J, Suárez Y, Fernández-Hernando C (2013) Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res 112(12):1592–1601CrossRefGoogle Scholar
  21. 21.
    Yin H, Zhao L, Zhang J, Zhang Y (2016) miR-144 regulates the proliferation of human vascular endothelial cells through targeting SRF. Int J Clin Exp Pathol 9(3):3357–3364Google Scholar
  22. 22.
    Tarling EJ, Cheng J, Cheng A, Wu J, Sallam T, Baldan A, de Aguiar Vallim TQ (2017) MicroRNA-144 antagonism promotes regression of atherosclerosis. Circulation 136:A21040Google Scholar
  23. 23.
    Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666CrossRefGoogle Scholar
  24. 24.
    De Rosa R, De Rosa S, Leistner D, Boeckel JN, Keller T, Fichtlscherer S, Dimmeler S, Zeiher AM (2017) Transcoronary concentration gradient of microrna-133a and outcome in patients with coronary artery disease. Am J Cardiol 120(1):15–24CrossRefGoogle Scholar
  25. 25.
    Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684CrossRefGoogle Scholar
  26. 26.
    Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, Malatesta S, Bucci M, Mammarella C, Santovito D, de Lutiis F, Marchetti A, Mezzetti A, Buttitta F (2011) A unique microRNA signature associated with plaque instability in humans. Stroke 42(9):2556–2563CrossRefGoogle Scholar
  27. 27.
    Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM et al (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103:2885–2890CrossRefGoogle Scholar
  28. 28.
    Minami Y, Satoh M, Maesawa C, Takahashi Y, Tabuchi T, Itoh T, Nakamura M (2009) Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Invest 39(5):359–367CrossRefGoogle Scholar
  29. 29.
    Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600CrossRefGoogle Scholar
  30. 30.
    Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C (2008) Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis 201:236–247CrossRefGoogle Scholar
  31. 31.
    Zhu H, Fan GC (2011) Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis 1(2):138–149PubMedPubMedCentralGoogle Scholar
  32. 32.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) Micrornas are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433CrossRefGoogle Scholar
  33. 33.
    Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, Palmisano BT, Tabet F, Cui HL, Rye KA, Sethupathy P, Remaley AT (2014) MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci USA 111;(40):14518–14523CrossRefGoogle Scholar
  34. 34.
    De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM (2011) Transcoronary concentration gradients of circulating microRNAs. Circulation 124;(18):1936–1944CrossRefGoogle Scholar
  35. 35.
    Novák J, Bienertová-Vašků J, Kára T, Novák M (2014) MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediators Inflamm 2014:275867CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of Medical BiochemistryMersin UniversityMersinTurkey
  2. 2.Faculty of Medicine, Department of Internal Medicine, CardiologyMersin UniversityMersinTurkey
  3. 3.Faculty of Medicine, Department of Biostatistics and Medical InformaticsMersin UniversityMersinTurkey

Personalised recommendations