Advertisement

Bag-1 silencing enhanced chemotherapeutic drug-induced apoptosis in MCF-7 breast cancer cells affecting PI3K/Akt/mTOR and MAPK signaling pathways

  • Pelin Ozfiliz Kilbas
  • Izzet Mehmet Akcay
  • Gizem Dinler DoganayEmail author
  • Elif Damla ArisanEmail author
Original Article
  • 71 Downloads

Abstract

The multifunctional anti-apoptotic Bag-1 protein has important roles in apoptosis, proteasome-mediated degradation, transcriptional regulation, and intracellular signaling. Bag-1 promotes cell survival and proliferation, and is overexpressed in breast cancer. Therefore, Bag-1-targeted therapy might be a promising strategy to treat breast cancer. However, the effects of Bag-1 silencing in combination with conventional chemotherapeutic drugs on cell viability and major signaling pathways have not yet been fully investigated in breast cancer cells. In this study, we investigated the cytotoxic effects of Bag-1 silencing, alone and in combination with cisplatin or paclitaxel treatment, in MCF-7 breast cancer cells. Bag-1 knockdown by shRNA or siRNA transfection sensitized MCF-7 cells to apoptosis induced by cisplatin or paclitaxel. Combination of Bag-1 silencing and drug treatment more potently downregulated the pro-survival PI3K/Akt/mTOR and p44/42 mitogen activated protein kinase (MAPK) pathways, and more potently upregulated the stress-activated p38 and SAPK/JNK MAPK pathways. Bag-1-silenced drug-treated cells had also highly reduced proliferative capacity, downregulated cyclin–cyclin dependent kinase complexes and upregulated tumor suppressors p21 and Rb. These results overall indicated that Bag-1 silencing enhanced cisplatin- or paclitaxel-induced cytotoxicity through multiple pathways. In conclusion, Bag-1 targeted therapy might enhance the therapeutic potential of conventional anti-cancer drugs in the treatment of breast cancer.

Keywords

Bag-1 siRNA/shRNA Chemotherapeutic agents Apoptosis Breast cancer MAPK PI3K/Akt/mTOR pathway 

Notes

Acknowledgements

This work was supported by internal funds of Istanbul Technical University and Istanbul Kultur University Scientific Project Support Centers.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interest.

Research involving human participants and/or animals

There are no human participants and/or animals used in this study.

Informed consent

Not applicable.

Supplementary material

11033_2018_4540_MOESM1_ESM.pptx (5.6 mb)
Supplemental Fig. 1—Bag-1 silencing reduced proliferative capacity and colony forming potential of cisplatin- or paclitaxel-treated MCF-7 cells. Colony formation assay (a). Soft-agar (anchorage-independent) colony formation assay (b). (PPTX 5777 KB)

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 2013;63(1):11–30.  https://doi.org/10.3322/caac.21166 CrossRefPubMedGoogle Scholar
  2. 2.
    Fischgrabe J, Wulfing P (2008) Targeted therapies in breast cancer: established drugs and recent developments. Curr Clin Pharmacol 3(2):85–98CrossRefGoogle Scholar
  3. 3.
    Li QQ, Wang G, Liang H, Li JM, Huang F, Agarwal PK et al (2013) Beta-Elemene promotes cisplatin-induced cell death in human bladder cancer and other carcinomas. Anticancer Res 33(4):1421–1428PubMedGoogle Scholar
  4. 4.
    Niknafs B (2011) Induction of apoptosis and non-apoptosis in human breast cancer cell line (MCF-7) by cisplatin and caffeine. Iran Biomed J 15(4):130–133PubMedPubMedCentralGoogle Scholar
  5. 5.
    Majeed W, Aslam B, Javed I, Khaliq T, Muhammad F, Ali A et al (2014) Breast cancer: major risk factors and recent developments in treatment. Asian Pac J Cancer Prev 15(8):3353–3358CrossRefGoogle Scholar
  6. 6.
    Iorns E, Lord CJ, Turner N, Ashworth A (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6(7):556–568.  https://doi.org/10.1038/nrd2355 CrossRefPubMedGoogle Scholar
  7. 7.
    Eroles P, Bosch A, Perez-Fidalgo JA, Lluch A (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 38(6):698–707.  https://doi.org/10.1016/j.ctrv.2011.11.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Ciruelos Gil EM (2014) Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev 40(7):862–871.  https://doi.org/10.1016/j.ctrv.2014.03.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Lopez-Knowles E, O’Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P et al (2010) PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 126(5):1121–1131.  https://doi.org/10.1002/ijc.24831 CrossRefPubMedGoogle Scholar
  10. 10.
    Faried LS, Faried A, Kanuma T, Nakazato T, Tamura T, Kuwano H et al (2006) Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin increases chemosensitivity of CaSki cells to paclitaxel. Eur J Cancer 42(7):934–947.  https://doi.org/10.1016/j.ejca.2005.12.018 CrossRefPubMedGoogle Scholar
  11. 11.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945.  https://doi.org/10.1101/gad.1212704 CrossRefPubMedGoogle Scholar
  12. 12.
    Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664CrossRefGoogle Scholar
  13. 13.
    Gohr K, Hamacher A, Engelke LH, Kassack MU (2017) Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer 17(1):711.  https://doi.org/10.1186/s12885-017-3695-5 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cai Y, Tan X, Liu J, Shen Y, Wu D, Ren M et al (2014) Inhibition of PI3K/Akt/mTOR signaling pathway enhances the sensitivity of the SKOV3/DDP ovarian cancer cell line to cisplatin in vitro. Chin J Cancer Res 26(5):564–572.  https://doi.org/10.3978/j.issn.1000-9604.2014.08.20 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Blanco E, Sangai T, Wu S, Hsiao A, Ruiz-Esparza GU, Gonzalez-Delgado CA et al (2014) Colocalized delivery of rapamycin and paclitaxel to tumors enhances synergistic targeting of the PI3K/Akt/mTOR pathway. Mol Ther 22(7):1310–1319.  https://doi.org/10.1038/mt.2014.27 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH et al (2002) The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 80(2):239–256CrossRefGoogle Scholar
  17. 17.
    Troppmair J, Bruder JT, Munoz H, Lloyd PA, Kyriakis J, Banerjee P et al (1994) Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12-O-tetradecanoylphorbol-13-acetate requires Raf and is necessary for transformation. J Biol Chem 269(9):7030–7035PubMedGoogle Scholar
  18. 18.
    Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271(34):20608–20616CrossRefGoogle Scholar
  19. 19.
    Soh JW, Mao Y, Liu L, Thompson WJ, Pamukcu R, Weinstein IB (2001) Protein kinase G activates the JNK1 pathway via phosphorylation of MEKK1. J Biol Chem 276(19):16406–16410.  https://doi.org/10.1074/jbc.C100079200 CrossRefPubMedGoogle Scholar
  20. 20.
    Xu R, Sato N, Yanai K, Akiyoshi T, Nagai S, Wada J et al (2009) Enhancement of paclitaxel-induced apoptosis by inhibition of mitogen-activated protein kinase pathway in colon cancer cells. Anticancer Res 29(1):261–270PubMedGoogle Scholar
  21. 21.
    Hernandez Losa J, Parada Cobo C, Guinea Viniegra J, Sanchez-Arevalo Lobo VJ, Ramon y Cajal S, Sanchez-Prieto R (2003) Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 22(26):3998–4006.  https://doi.org/10.1038/sj.onc.1206608 CrossRefPubMedGoogle Scholar
  22. 22.
    Tang SC, Shehata N, Chernenko G, Khalifa M, Wang X (1999) Expression of BAG-1 in invasive breast carcinomas. J Clin Oncol 17(6):1710–1719.  https://doi.org/10.1200/JCO.1999.17.6.1710 CrossRefPubMedGoogle Scholar
  23. 23.
    Liu H, Lu S, Gu L, Gao Y, Wang T, Zhao J et al (2014) Modulation of BAG-1 expression alters the sensitivity of breast cancer cells to tamoxifen. Cell Physiol Biochem 33(2):365–374.  https://doi.org/10.1159/000356676 CrossRefPubMedGoogle Scholar
  24. 24.
    Tang SC (2002) BAG-1, an anti-apoptotic tumour marker. IUBMB Life 53(2):99–105.  https://doi.org/10.1080/15216540211473 CrossRefPubMedGoogle Scholar
  25. 25.
    Cutress RI, Townsend PA, Brimmell M, Bateman AC, Hague A, Packham G (2002) BAG-1 expression and function in human cancer. Br J Cancer 87(8):834–839.  https://doi.org/10.1038/sj.bjc.6600538 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Turner BC, Krajewski S, Krajewska M, Takayama S, Gumbs AA, Carter D et al (2001) BAG-1: a novel biomarker predicting long-term survival in early-stage breast cancer. J Clin Oncol 19(4):992–1000.  https://doi.org/10.1200/JCO.2001.19.4.992 CrossRefPubMedGoogle Scholar
  27. 27.
    Bardelli A, Longati P, Albero D, Goruppi S, Schneider C, Ponzetto C et al (1996) HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J 15(22):6205–6212CrossRefGoogle Scholar
  28. 28.
    Packham G, Brimmell M, Cleveland JL (1997) Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem J 328(Pt 3):807–813CrossRefGoogle Scholar
  29. 29.
    Yang X, Hao Y, Ferenczy A, Tang SC, Pater A (1999) Overexpression of anti-apoptotic gene BAG-1 in human cervical cancer. Exp Cell Res 247(1):200–207.  https://doi.org/10.1006/excr.1998.4349 CrossRefPubMedGoogle Scholar
  30. 30.
    Yang X, Hao Y, Ding Z, Pater A, Tang SC (1999) Differential expression of antiapoptotic gene BAG-1 in human breast normal and cancer cell lines and tissues. Clin Cancer Res 5(7):1816–1822PubMedGoogle Scholar
  31. 31.
    Liu H, Liang Y, Li Y, Li Y, Wang J, Wu H et al (2010) Gene silencing of BAG-1 modulates apoptotic genes and sensitizes lung cancer cell lines to cisplatin-induced apoptosis. Cancer Biol Ther 9(10):832–840CrossRefGoogle Scholar
  32. 32.
    Xiong J, Chen J, Chernenko G, Beck J, Liu H, Pater A et al (2003) Antisense BAG-1 sensitizes HeLa cells to apoptosis by multiple pathways. Biochem Biophys Res Commun 312(3):585–591.  https://doi.org/10.1016/j.bbrc.2003.10.160 CrossRefPubMedGoogle Scholar
  33. 33.
    Ozfiliz P, Kizilboga T, Demir S, Alkurt G, Palavan-Unsal N, Arisan ED et al (2015) Bag-1 promotes cell survival through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells. Cell Biochem Funct 33(5):293–307.  https://doi.org/10.1002/cbf.3114 CrossRefPubMedGoogle Scholar
  34. 34.
    Janicke RU, Ng P, Sprengart ML, Porter AG (1998) Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 273(25):15540–15545CrossRefGoogle Scholar
  35. 35.
    Leggett S, Koczwara B, Miller M (2015) The impact of complementary and alternative medicines on cancer symptoms, treatment side effects, quality of life, and survival in women with breast cancer—a systematic review. Nutr Cancer 67(3):373–391.  https://doi.org/10.1080/01635581.2015.1004731 CrossRefPubMedGoogle Scholar
  36. 36.
    Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5(6):468–479.  https://doi.org/10.1038/nrc1631 CrossRefPubMedGoogle Scholar
  37. 37.
    Haussecker D (2014) Current issues of RNAi therapeutics delivery and development. J Control Release 195:49–54.  https://doi.org/10.1016/j.jconrel.2014.07.056 CrossRefPubMedGoogle Scholar
  38. 38.
    Zapata JM, Krajewska M, Krajewski S, Huang RP, Takayama S, Wang HG et al (1998) Expression of multiple apoptosis-regulatory genes in human breast cancer cell lines and primary tumors. Breast Cancer Res Treat 47(2):129–140CrossRefGoogle Scholar
  39. 39.
    Rorke S, Murphy S, Khalifa M, Chernenko G, Tang SC (2001) Prognostic significance of BAG-1 expression in nonsmall cell lung cancer. Int J Cancer 95(5):317–322CrossRefGoogle Scholar
  40. 40.
    Shindoh M, Adachi M, Higashino F, Yasuda M, Hida K, Nishioka T et al (2000) BAG-1 expression correlates highly with the malignant potential in early lesions (T1 and T2) of oral squamous cell carcinoma. Oral Oncol 36(5):444–449CrossRefGoogle Scholar
  41. 41.
    Anderson LR, Sutherland RL, Butt AJ (2010) BAG-1 overexpression attenuates luminal apoptosis in MCF-10A mammary epithelial cells through enhanced RAF-1 activation. Oncogene 29(4):527–538.  https://doi.org/10.1038/onc.2009.362 CrossRefPubMedGoogle Scholar
  42. 42.
    Papadakis E, Robson N, Yeomans A, Bailey S, Laversin S, Beers S et al (2016) A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells. Oncotarget 7(14):18851–18864.  https://doi.org/10.18632/oncotarget.7944 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tolcher AW (1996) Paclitaxel couplets with cyclophosphamide or cisplatin in metastatic breast cancer. Semin Oncol 23(1 Suppl 1):37–43PubMedGoogle Scholar
  44. 44.
    Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96(8):4240–4245CrossRefGoogle Scholar
  45. 45.
    Cidado J, Park BH (2012) Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J Mammary Gland Biol Neoplasia 17(3–4):205–216.  https://doi.org/10.1007/s10911-012-9264-2 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14(5):381–395CrossRefGoogle Scholar
  47. 47.
    He Q, Liang CH, Lippard SJ (2000) Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA 97(11):5768–5772.  https://doi.org/10.1073/pnas.100108697 CrossRefPubMedGoogle Scholar
  48. 48.
    Mullan PB, Quinn JE, Gilmore PM, McWilliams S, Andrews H, Gervin C et al (2001) BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 20(43):6123–6131.  https://doi.org/10.1038/sj.onc.1204712 CrossRefPubMedGoogle Scholar
  49. 49.
    Jiang Z, Deng T, Jones R, Li H, Herschkowitz JI, Liu JC et al (2010) Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J Clin Investig 120(9):3296–3309.  https://doi.org/10.1172/JCI41490 CrossRefPubMedGoogle Scholar
  50. 50.
    Akhter N, Akhtar MS, Ahmad MM, Haque S, Siddiqui S, Hasan SI et al (2014) Association of mutation and hypermethylation of p21 gene with susceptibility to breast cancer: a study from north India. Mol Biol Rep 41(5):2999–3007.  https://doi.org/10.1007/s11033-014-3159-9 CrossRefPubMedGoogle Scholar
  51. 51.
    Dotto GP (2000) p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta 1471(1):M43–M56PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Molecular Biology-Genetics and BiotechnologyIstanbul Technical UniversityIstanbulTurkey
  2. 2.Department of Molecular Biology and GeneticsIstanbul Kultur UniversityIstanbulTurkey

Personalised recommendations