Molecular Biology Reports

, Volume 46, Issue 1, pp 805–811 | Cite as

Significant association of TOX3/LOC643714 locus-rs3803662 and breast cancer risk in a cohort of Iranian population

  • Amir Tajbakhsh
  • Fahimeh Afzal Javan
  • Mahdi Rivandi
  • Atefeh Moezzi
  • Soheila Abedini
  • Mahla Asghari
  • Zahra Farjami
  • Hosein Soltanian
  • Fatemeh Homaei Shandiz
  • Mohammad Mahdi Kooshyar
  • Alireza PasdarEmail author
Original Article


Genome-wide association studies normally focus on low penetrance and moderate to high-frequency single nucleotide polymorphisms (SNPs), which lead to genetic susceptibility to breast cancer. In this regard, the T allele of rs3803662 has been associated with breast cancer risk and with lower expression level of TOX3. We aimed to assess the risk of breast cancer associated with this polymorphism in an Iranian population. Using Tetra Primer ARMS PCR, rs3803662 was analyzed in a total of 943 individuals (430 cases and 513 healthy controls form North East of Iran). Allele frequencies and genotype distribution were analyzed in case and control samples to find out any association using the Chi-squared test and Logistic regression. All cases were pathologically confirmed; all controls were mainly healthy individuals. Genotype frequencies were found to be in agreement with HWE in controls and cases. TOX3-rs3803662 SNP was associated with breast cancer risk in our study (T vs. C allele contrast model: OR 1.36, 95% CI 1.12–1.64, Pvalue = 0.002; TT vs. CT + TT dominant model: OR 0.67, 95% CI 0.51–0.87, Pvalue = 0.003; TT vs. CT + CC recessive model: OR 1.54, 95% CI 1.02–2.30, Pvlue = 0.036). Moreover, after adjusting for age, BMI, history of previous cancer and also family history of cancer, all results, except for the recessive model, were remained significant. TOX3-rs3803662, may confer some degrees of risk of breast cancer in Iranian population. This finding is in line with similar results in other populations. It highlights the importance of TOX3 pathway in tumorigenesis.


TOX3/ TNRC9 Cancer risk Breast carcinoma Outcomes 



Single nucleotide polymorphisms


CAMP response element binding protein


CREB-binding protein




Mammographic density


Amplification refractory mutation system


Hardy–Weinberg equilibrium


Odds ratio


Confidence interval


Loss of heterozygosity


Genome-wide association studies




Epidermal growth factor receptor


Forkhead box 2


Progesterone receptor


Triple-negative breast cancer


Formalin-fixed, paraffin-embedded


Squamous cell carcinoma


Breast conservative surgery


Modified radical mastectomy.



This manuscript was based on PhD thesis of Mr. Amir Tajbakhsh and was supported by the Mashhad University of science (Grant Number: 940789).


This study was supported by Mashhad University of Medical Sciences (Grant No. 940789).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to disclose.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. CrossRefPubMedGoogle Scholar
  2. 2.
    Afsharfard A, Mozaffar M, Orang E, Tahmasbpour E (2013) Trends in epidemiology, clinical and histopathological characteristics of breast cancer in Iran: results of a 17 year study. Asian Pac J Cancer Prev 14(11):6905–6911CrossRefGoogle Scholar
  3. 3.
    Mousavi SM, Gouya MM, Ramazani R, Davanlou M, Hajsadeghi N, Seddighi Z (2009) Cancer incidence and mortality in Iran. Ann Oncol 20(3):556–563. CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang L, Long X (2015) Association of three SNPs in TOX3 and breast cancer risk: evidence from 97275 cases and 128686 controls. Sci Rep 5:12773. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fanale D, Amodeo V, Corsini LR, Rizzo S, Bazan V, Russo A (2012) Breast cancer genome-wide association studies: there is strength in numbers. Oncogene 31(17):2121–2128. CrossRefPubMedGoogle Scholar
  7. 7.
    Dittmer S, Kovacs Z, Yuan SH, Siszler G, Kögl M, Summer H et al (2011) TOX3 is a neuronal survival factor that induces transcription depending on the presence of CITED1 or phosphorylated CREB in the transcriptionally active complex. J Cell Sci 124(2):252–260CrossRefGoogle Scholar
  8. 8.
    Udler MS, Ahmed S, Healey CS, Meyer K, Struewing J, Maranian M et al (2010) Fine scale mapping of the breast cancer 16q12 locus. Hum Mol Genet 19(12):2507–2515. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Barrdahl M, Canzian F, Lindstrom S, Shui I, Black A, Hoover RN et al (2015) Association of breast cancer risk loci with breast cancer survival. Int J Cancer 137(12):2837–2845. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fernandez-Navarro P, Pita G, Santamarina C, Moreno MP, Vidal C, Miranda-Garcia J et al (2013) Association analysis between breast cancer genetic variants and mammographic density in a large population-based study (Determinants of Density in Mammographies in Spain) identifies susceptibility loci in TOX3 gene. Eur J Cancer 49(2):474–481. CrossRefPubMedGoogle Scholar
  11. 11.
    Antoniou AC, Spurdle AB, Sinilnikova OM, Healey S, Pooley KA, Schmutzler RK et al (2008) Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet 82(4):937–948. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liang J, Chen P, Hu Z, Shen H, Wang F, Chen L et al (2010) Genetic variants in trinucleotide repeat-containing 9 (TNRC9) are associated with risk of estrogen receptor positive breast cancer in a Chinese population. Breast Cancer Res Treat 124(1):237–241. CrossRefPubMedGoogle Scholar
  13. 13.
    Campa D, Kaaks R, Le Marchand L, Haiman CA, Travis RC, Berg CD et al (2011) Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 103(16):1252–1263. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gudmundsdottir ET, Barkardottir RB, Arason A, Gunnarsson H, Amundadottir LT, Agnarsson BA et al (2013) Expression levels of TOX3 and the risk allele of the associated SNP rs3803662 predict adverse outcome for breast cancer patients. Can Res. CrossRefGoogle Scholar
  15. 15.
    Han W, Woo JH, Yu JH, Lee MJ, Moon HG, Kang D et al (2011) Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiol Biomark Prev 20(5):793–798. CrossRefGoogle Scholar
  16. 16.
    Butt S, Harlid S, Borgquist S, Ivarsson M, Landberg G, Dillner J et al (2012) Genetic predisposition, parity, age at first childbirth and risk for breast cancer. BMC Res Notes 5(1):1CrossRefGoogle Scholar
  17. 17.
    Shan J, Mahfoudh W, Dsouza SP, Hassen E, Bouaouina N, Abdelhak S et al (2012) Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: susceptibility and prognostic implications in Tunisians. Breast Cancer Res Treat 135(3):715–724. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Barzan D, Veldwijk MR, Herskind C, Li Y, Zhang B, Sperk E et al (2013) Comparison of genetic variation of breast cancer susceptibility genes in Chinese and German populations. Eur J Hum Genet 21(11):1286–1292. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hutter CM, Young AM, Ochs-Balcom HM, Carty CL, Wang T, Chen CT et al (2011) Replication of breast cancer GWAS susceptibility loci in the Women’s Health Initiative African American SHARe Study. Cancer Epidemiol Biomark Prev 20(9):1950–1959. CrossRefGoogle Scholar
  20. 20.
    Slattery ML, Baumgartner KB, Giuliano AR, Byers T, Herrick JS, Wolff RK (2011) Replication of five GWAS-identified loci and breast cancer risk among Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Res Treat 129(2):531–539. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Harlid S, Ivarsson MI, Butt S, Grzybowska E, Eyfjord JE, Lenner P et al (2012) Combined effect of low-penetrant SNPs on breast cancer risk. Br J Cancer 106(2):389–396. CrossRefPubMedGoogle Scholar
  22. 22.
    Deng ZP, Shi XG, Liu QF, Wang ZQ, Feng T, Jin TB et al (2016) Meta-analysis of TNRC9 rs3803662 polymorphism and breast cancer risk. Int J Clin Exp Med 9(3):6228–6236Google Scholar
  23. 23.
    Li L, Guo G, Wang F, Lv P, Zhu M, Gu Y et al (2018) TOX high mobility group box family member 3 rs3803662 and breast cancer risk: a meta-analysis. J Cancer Res Ther 14(Supplement):S208–S212. CrossRefPubMedGoogle Scholar
  24. 24.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH et al (2014) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 138(2):241–256. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215CrossRefGoogle Scholar
  26. 26.
    Mousavi SM, Montazeri A, Mohagheghi MA, Jarrahi AM, Harirchi I, Najafi M et al (2007) Breast cancer in Iran: an epidemiological review. Breast J 13(4):383–391. CrossRefPubMedGoogle Scholar
  27. 27.
    Ottini L, Silvestri V, Saieva C, Rizzolo P, Zanna I, Falchetti M et al (2013) Association of low-penetrance alleles with male breast cancer risk and clinicopathological characteristics: results from a multicenter study in Italy. Breast Cancer Res Treat 138(3):861–868. CrossRefPubMedGoogle Scholar
  28. 28.
    Chigusa S, Moroi T, Shoji Y (2017) State-of-the-art calculation of the decay rate of electroweak vacuum in the standard model. Phys Rev Lett 119(21):211801. CrossRefPubMedGoogle Scholar
  29. 29.
    Tajbakhsh A, Pasdar A, Rezaee M, Fazeli M, Soleimanpour S, Hassanian SM et al (2018) The current status and perspectives regarding the clinical implication of intracellular calcium in breast cancer. J Cell Physiol 233(8):5623–5641. CrossRefPubMedGoogle Scholar
  30. 30.
    O’Flaherty E, Kaye J (2003) TOX defines a conserved subfamily of HMG-box proteins. BMC Genom 4(1):1CrossRefGoogle Scholar
  31. 31.
    Yuan SH, Qiu Z, Ghosh A (2009) TOX3 regulates calcium-dependent transcription in neurons. Proc Natl Acad Sci USA 106(8):2909–2914. CrossRefPubMedGoogle Scholar
  32. 32.
    Margolis RL, Abraham MR, Gatchell SB, Li SH, Kidwai AS, Breschel TS et al (1997) cDNAs with long CAG trinucleotide repeats from human brain. Hum Genet 100(1):114–122CrossRefGoogle Scholar
  33. 33.
    Watts GS, Oshiro MM, Junk DJ, Wozniak RJ, Watterson SJ, Domann FE et al (2004) The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells. Neoplasia 6(3):187–194. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Seksenyan A, Kadavallore A, Walts AE, de la Torre B, Berel D, Strom SP et al (2015) TOX3 is expressed in mammary ER(+) epithelial cells and regulates ER target genes in luminal breast cancer. BMC Cancer 15:22. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dollinger C, Ciftci S, Knopf-Marques H, Guner R, Ghaemmaghami AM, Debry C et al (2018) Incorporation of resident macrophages in engineered tissues: Multiple cell type response to microenvironment controlled macrophage-laden gelatine hydrogels. J Tissue Eng Regen Med 12(2):330–340. CrossRefPubMedGoogle Scholar
  36. 36.
    Riaz M, Berns EM, Sieuwerts AM, Ruigrok-Ritstier K, de Weerd V, Groenewoud A et al (2012) Correlation of breast cancer susceptibility loci with patient characteristics, metastasis-free survival, and mRNA expression of the nearest genes. Breast Cancer Res Treat 133(3):843–851. CrossRefPubMedGoogle Scholar
  37. 37.
    Shi M, O’Brien KM, Sandler DP, Taylor JA, Zaykin DV, Weinberg CR (2017) Previous GWAS hits in relation to young-onset breast cancer. Breast Cancer Res Treat 161(2):333–344. CrossRefPubMedGoogle Scholar
  38. 38.
    Reeves GK, Travis RC, Green J, Bull D, Tipper S, Baker K et al (2010) Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA 304(4):426–434. CrossRefPubMedGoogle Scholar
  39. 39.
    Chen MB, Wu XY, Shen W, Wei MX, Li C, Cai B et al (2011) Association between polymorphisms of trinucleotide repeat containing 9 gene and breast cancer risk: evidence from 62,005 subjects. Breast Cancer Res Treat 126(1):177–183. CrossRefPubMedGoogle Scholar
  40. 40.
    Cowper-Sal lari R, Zhang X, Wright JB, Bailey SD, Cole MD, Eeckhoute J et al (2012) Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet 44(11):1191–1198. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Guo J, Sueta A, Nakamura K, Yoshimoto N, Baba M, Ishida N et al (2017) Genetic and environmental factors and serum hormones, and risk of estrogen receptor-positive breast cancer in pre- and postmenopausal Japanese women. Oncotarget 8(39):65759–65769. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gudmundsdottir ET, Barkardottir RB, Arason A, Gunnarsson H, Amundadottir LT, Agnarsson BA et al (2012) The risk allele of SNP rs3803662 and the mRNA level of its closest genes TOX3 and LOC643714 predict adverse outcome for breast cancer patients. BMC Cancer 12:621. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fasching PA, Pharoah PD, Cox A, Nevanlinna H, Bojesen SE, Karn T et al (2012) The role of genetic breast cancer susceptibility variants as prognostic factors. Hum Mol Genet 21(17):3926–3939. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Broeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS et al (2011) Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20(16):3289–3303. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Antoniou AC, Beesley J, McGuffog L, Sinilnikova OM, Healey S, Neuhausen SL et al (2010) Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res 70(23):9742–9754. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Smid M, Wang Y, Klijn JG, Sieuwerts AM, Zhang Y, Atkins D et al (2006) Genes associated with breast cancer metastatic to bone. J Clin Oncol 24(15):2261–2267. CrossRefPubMedGoogle Scholar
  47. 47.
    Nordgard SH, Johansen FE, Alnaes GI, Naume B, Borresen-Dale AL, Kristensen VN (2007) Genes harbouring susceptibility SNPs are differentially expressed in the breast cancer subtypes. Breast Cancer Res 9(6):113. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yoshimoto N, Dong Y, Sugiura H, Terada M, Kondo N, Endo Y et al (2017) Study to determine whether SNPs in CYP17A1, ESR1, and TNRC9 loci correlate with increased breast cancer risk and serum 25-OH vitamin D levels. J Clin Oncol 35(15_suppl):e13086–e13086. CrossRefGoogle Scholar
  49. 49.
    Moazzeni H, Najafi A, Khani M (2017) Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Cell Probes 34:45–52. CrossRefPubMedGoogle Scholar
  50. 50.
    Yu J, Lei R, Zhuang X, Li X, Li G, Lev S et al (2016) MicroRNA-182 targets SMAD7 to potentiate TGFbeta-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 7:13884. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ahsan H, Halpern J, Kibriya MG, Pierce BL, Tong L, Gamazon E et al (2014) A genome-wide association study of early-onset breast cancer identifies PFKM as a novel breast cancer gene and supports a common genetic spectrum for breast cancer at any age. Cancer Epidemiol Biomark Prev 23(4):658–669. CrossRefGoogle Scholar
  52. 52.
    Elematore I, Gonzalez-Hormazabal P, Reyes JM, Blanco R, Bravo T, Peralta O et al (2014) Association of genetic variants at TOX3, 2q35 and 8q24 with the risk of familial and early-onset breast cancer in a South-American population. Mol Biol Rep 41(6):3715–3722. CrossRefPubMedGoogle Scholar
  53. 53.
    Tapper W, Hammond V, Gerty S, Ennis S, Simmonds P, Collins A et al (2008) The influence of genetic variation in 30 selected genes on the clinical characteristics of early onset breast cancer. Breast Cancer Res 10(6):R108. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ahmadi BS, Emadi BM, Rouhi L, Shayesteh AA (2016) The expression of tox3 gene in patients with esophageal cancer. J Isfahan Med School 34 (395):971–977Google Scholar
  55. 55.
    Daryabor M, Mousavi-Naeini SM, Mofid B (2017) Comparison of recurrence, metastasis and survival rate in BCS versus MRM for stage 1 and stage 2 breast cancer. The Breast 32:S91. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Amir Tajbakhsh
    • 1
    • 2
    • 3
  • Fahimeh Afzal Javan
    • 1
    • 2
  • Mahdi Rivandi
    • 1
    • 2
  • Atefeh Moezzi
    • 1
    • 2
  • Soheila Abedini
    • 2
    • 6
  • Mahla Asghari
    • 2
    • 6
  • Zahra Farjami
    • 1
    • 2
  • Hosein Soltanian
    • 2
  • Fatemeh Homaei Shandiz
    • 4
  • Mohammad Mahdi Kooshyar
    • 5
  • Alireza Pasdar
    • 1
    • 6
    • 7
    Email author
  1. 1.Department of Modern Sciences & Technologies, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  2. 2.Student Research Committee, Department of Modern Sciences & Technologies, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  3. 3.Young Researchers and Elite Club, Yasooj BranchIslamic Azad UniversityYasoojIran
  4. 4.Solid Tumor Treatment Research CenterMashhad University of Medical UniversityMashhadIran
  5. 5.Department of Haematology-Oncology, Imam Reza HospitalMashhad University of Medical SciencesMashhadIran
  6. 6.Department of Medical Genetics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  7. 7.Division of Applied Medicine, Faculty of MedicineUniversity of AberdeenAberdeenUK

Personalised recommendations