Molecular Biology Reports

, Volume 46, Issue 1, pp 705–718 | Cite as

Isolation and characterization of three skeletal troponin genes and association with growth-related traits in Exopalaemon carinicauda

  • Jiajia Wang
  • Qianqian Ge
  • Jitao Li
  • Zhao Chen
  • Jian LiEmail author
Original Article


Growth is among the most important traits for animal breeding. Muscle growth is controlled by different cellular and molecular pathways and environments, and it also relies heavily on high-quality muscle contractions. The troponin complex, composed of troponin T (TnT), troponin C (TnC) and troponin I (TnI), plays a vital role in the regulation of muscle contraction. In this study, the cDNA of EcTnT, EcTnC and EcTnI of the ridgetail white prawn Exopalaemon carinicauda were cloned and characterized. The full length cDNA of EcTnT, EcTnC and EcTnI were 1 373 bp, 692 bp, and 1 475 bp, encoding a protein of 385, 150 and 193 amino acid residues, respectively. The expression of all genes was predominantly detected in abdominal muscle, while extremely lesser expressed in gill and hepatopancreas. Higher expression level of EcTnI was observed in heavier shrimp of the same age during different developmental stages, excepted for 120 days. Eleven single nucleotide polymorphisms (SNPs) were revealed in the three skeletal troponin genes, and only c.TnI66 A>G from EcTnI was significantly associated with both body weight and body length (P < 0.05). In summary, the result of this study suggested that EcTnI is growth-related gene of the troponin complex gene and the presence of SNP suggests that it could be a candidate gene for shrimp genetic improvement research.


Exopalaemon carinicauda Troponin Gene expression Growth-related SNP 



This project was financially supported by the earmarked fund for National Key R & D Program of China (2018YFD0901302), Modern Agro-industry Technology Research System (No. CARS-48), The Program of Shandong Leading Talent (No. LNJY2015002), National Natural Science Foundation of China (No. 31472275) and Qingdao Industrial Development Program Science and Technology Benefit Special Project (17-3-3-62-nsh).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The collection and handling of the animals in this study was approved by the Animal Care and Use Committee at the Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, and all experimental animal protocols were carried out in accordance with national and institutional guidelines for the care and use of laboratory animals at the Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences.


  1. 1.
    Xu W, Xie J, Shi H, Li C (2010) Hematodinium infections in cultured ridgetail white prawns, Exopalaemon carinicauda, in eastern China. Aquaculture 300(1):25–31CrossRefGoogle Scholar
  2. 2.
    Herzberg O, James MN (1985) Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 313(6004):653–659PubMedCrossRefGoogle Scholar
  3. 3.
    Narita A, Yasunaga T, Ishikawa T, Mayanagi K, Wakabayashi T (2001) Ca2+-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy 1. J Mol Biol 308(2):241–261PubMedCrossRefGoogle Scholar
  4. 4.
    Chen H, Wang D, Xu G, Zheng C (2012) Cloning, structural analysis and expression of cardiac troponin C (TNNC1) gene in goat. Afr J Biotechnol 11(16):3903–3910Google Scholar
  5. 5.
    Jensen D, Reynolds N, Yang YP, Shakya S, Wang ZQ, Stuehr DJ, Wei CC (2015) The exchanged EF-hands in calmodulin and troponin C chimeras impair the Ca2+-induced hydrophobicity and alter the interaction with Orai1: a spectroscopic, thermodynamic and kinetic study. BMC Biochem 16(1):1–18CrossRefGoogle Scholar
  6. 6.
    Chalovich JM (2002) Regulation of striated muscle contraction: a discussion. J Muscle Res Cell Motil 23(4):353–361PubMedCrossRefGoogle Scholar
  7. 7.
    Wei B, Jin JP (2011) Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function. Arch Biochem Biophys 505(2):144–154PubMedCrossRefGoogle Scholar
  8. 8.
    Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80(2):853–924PubMedCrossRefGoogle Scholar
  9. 9.
    Chong SM, Jin JP (2009) To investigate protein evolution by detecting suppressed epitope structures. J Mol Evol 68(5):448–460PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Szczesna D, Potter JD (2002) The role of troponin in the Ca(2+)-regulation of skeletal muscle contraction. Results Probl Cell Differ 43(36):171–190CrossRefGoogle Scholar
  11. 11.
    Pierzchala M, Hoekman AJW, Urbanski P, Kruijt L, Kristensen L, Young JF, Oksbjerg N, Goluch D, Te Pas MFW (2014) Validation of biomarkers for loin meat quality (M. longissimus) of pigs. J Anim Breed Genet 131(4):258–270PubMedCrossRefGoogle Scholar
  12. 12.
    Wei B, Lu Y, Jin JP (2014) Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue. J Physiol 592(6):1367–1380PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wang Z, Shang P, Li Q, Wang L, Chamba Y, Zhang B, Zhang H, Wu C (2017) iTRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs. Sci Rep 7:46717PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ma X, Zheng C, Hu Y, Wang L, Yang X, Jiang Z (2015) Dietary l-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs. PLoS ONE 10(1):e0117294PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Guan Y, He M, Wu H (2017) Differential mantle transcriptomics and characterization of growth-related genes in the diploid and triploid pearl oyster Pinctada fucata. Mar Genomics 6(33):31–38CrossRefGoogle Scholar
  16. 16.
    Ren X, Yu X, Gao B, Li J, Liu P (2016) iTRAQ-based identification of differentially expressed proteins related to growth in the swimming crab, Portunus trituberculatus. Aquac Res 48(6):3257–3267CrossRefGoogle Scholar
  17. 17.
    Wang WZ, Li T, Shi LJ, Yan XR, Pan YL, Wu XS (2015) Screening of differentially-expressed genes in the muscles of rabbit breeds with expression profile chip. Genet Mol Res 14(3):8038–8045PubMedCrossRefGoogle Scholar
  18. 18.
    Divet A, Paesante S, Grasso C, Cavagna D, Tiveron C, Paolini C, Protasi F, Huchet-Cadiou C, Treves S, Zorzato F (2007) Increased Ca2+ storage capacity of the skeletal muscle sarcoplasmic reticulum of transgenic mice over-expressing membrane bound calcium binding protein junctate. J Cell Physiol 213(2):464–474PubMedCrossRefGoogle Scholar
  19. 19.
    Sun Y, Huang Y, Hu G, Zhang X, Ruan Z, Zhao X, Guo C, Tang Z, Li X, You X (2016) Comparative transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS ONE 11(12):e0168802PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Liu ZJ, Cordes J (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238(1–4):1–37CrossRefGoogle Scholar
  21. 21.
    Glenn KL, Grapes L, Suwanasopee T, Harris DL, Li Y, Wilson K, Rothschild MF (2015) SNP analysis of AMY2 and CTSL genes in Litopenaeus vannamei and Penaeus monodon shrimp. Anim Genet 36(3):235–236CrossRefGoogle Scholar
  22. 22.
    Marti SM, Onteru SK, Du ZQ, Rothschild MF (2010) Short communication: SNP analyses of the 5HT1R and STAT genes in Pacific white shrimp, Litopenaeus vannamei. Span J Agric Res 8(1):53–55CrossRefGoogle Scholar
  23. 23.
    Prasertlux S, Khamnamtong B, Chumtong P, Klinbunga S, Menasveta P (2010) Expression levels of RuvBL2 during ovarian development and association between its single nucleotide polymorphism (SNP) and growth of the giant tiger shrimp Penaeus monodon. Aquaculture 308(3):S83–S90CrossRefGoogle Scholar
  24. 24.
    Blanck DV, Valenti WC, Freitas PDD, Junior PMG (2013) Isolation and characterization of SNPs within HSC70 gene in the freshwater prawn Macrobrachium amazonicum. Conserv Genet Resour 5(3):631–633CrossRefGoogle Scholar
  25. 25.
    Blanck DV, Penteado MDA, Valenti WC, Freitas PDD, Luis J, Da L, Rocha C, Pedro, Galetti M (2016) SNPs within HSC70 gene are associated to growth traits in the Amazon River prawn. Pan-American J Aquat Sci 11(3):210–219Google Scholar
  26. 26.
    Lv J, Zhang D, Gao B, Liu P, Li J (2015) Transcriptome and MassARRAY analysis for identification of transcripts and SNPs for growth traits of the swimming crab Portunus trituberculatus. Gene 566(2):229–235PubMedCrossRefGoogle Scholar
  27. 27.
    Duan Y, Liu P, Li J, Li J, Gao B, Chen P (2013) cDNA cloning, characterization and expression analysis of peroxiredoxin 5 gene in the ridgetail white prawn Exopalaemon carinicauda. Mol Biol Rep 40(12):6569–6577PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ge Q, Liang J, Li J, Li J, Duan Y, Zhao F, Ren H (2015) Molecular cloning and expression analysis of Relish gene from the ridgetail white prawn Exopalaemon carinicauda. Fish Sci 81(4):699–711CrossRefGoogle Scholar
  29. 29.
    Gupta M, Song P, Yates CR, Meibohm B (2004) Real-time PCR-based genotyping assay for CXCR2 polymorphisms. Clin Chim Acta 341(1):93–100PubMedCrossRefGoogle Scholar
  30. 30.
    Kalyanasundaram A, Santiago TC (2015) Identification and characterization of new allergen troponin C (Pen m 6.0101) from Indian black tiger shrimp Penaeus monodon. Eur Food Res Technol 240(3):509–515CrossRefGoogle Scholar
  31. 31.
    Chao E, Kim HW, Mykles DL (2010) Cloning and tissue expression of eleven troponin-C isoforms in the American lobster, Homarus americanus. Comp Biochem Physiol Part B 157(1):88CrossRefGoogle Scholar
  32. 32.
    Li JT, Ping C, Jian L, Ping L, He YY, Wang QY (2010) Construction of a muscle cDNA library of Chinese shrimp Fenneropenaeus chinensis and sequence analysis of the troponin I gene. J Ocean Univ China 9(1):81–86CrossRefGoogle Scholar
  33. 33.
    Zhao YZ, Chen XL, Yang CL, Peng M, Ping-Ping HE, Chen XH (2013) Sequence analysis of four different spliced variants of troponin I gene in Litopenaeus vannamei. J Shanghai Ocean Univ 22(6):807–814Google Scholar
  34. 34.
    Jin JP, Zhang Z, Bautista JA (2008) Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr 18(2):93–124PubMedCrossRefGoogle Scholar
  35. 35.
    Pan BS, Gordon AM, Potter JD (1991) Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin. J Biol Chem 266(19):12432–12438PubMedGoogle Scholar
  36. 36.
    Perry SV (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19(6):575PubMedCrossRefGoogle Scholar
  37. 37.
    Stefancsik R, Jha PK, Sarkar S (1998) Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction. Proc Natl Acad Sci USA 95(3):957–962PubMedCrossRefGoogle Scholar
  38. 38.
    Chen LP, Zhang J, Wei XL, Chen N, Huang CX, Xu MX, Wang WM, Wang HL (2013) Megalobrama amblycephala cardiac troponin T variants: molecular cloning, expression and response to nitrite. Gene 527(2):558–564PubMedCrossRefGoogle Scholar
  39. 39.
    Tanaka H, Suzuki H, Ohtsuki I, Ojima T (2008) Structure–function relationships of molluscan troponin T revealed by limited proteolysis. Biochim Biophys Acta 1784(8):1037–1042PubMedCrossRefGoogle Scholar
  40. 40.
    Bullard B, Leonard K, Larkins A, Butcher G, Karlik C, Fyrberg E (1988) Troponin of asynchronous flight muscle. J Mol Biol 204(3):621–637PubMedCrossRefGoogle Scholar
  41. 41.
    Marden JH, Fitzhugh GH, Girgenrath M, Wolf MR, Girgenrath S (2001) Alternative splicing, muscle contraction and intraspecific variation: associations between troponin T transcripts, Ca(2+) sensitivity and the force and power output of dragonfly flight muscles during oscillatory contraction. J Exp Biol 204(20):3457–3470PubMedGoogle Scholar
  42. 42.
    Wnuk W (1989) Resolution and calcium-binding properties of the two major isoforms of troponin C from crayfish. J Biol Chem 264(30):18240–18246PubMedGoogle Scholar
  43. 43.
    Tanaka H, Takahashi H, Ojima T (2013) Ca2+-binding properties and regulatory roles of lobster troponin C sites II and IV. FEBS Lett 587(16):2612PubMedCrossRefGoogle Scholar
  44. 44.
    Sheng JJ, Jin JP (2016) TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships. Gene 576(1):385–394PubMedCrossRefGoogle Scholar
  45. 45.
    Kobayashi T, Takagi T, Konishi K, Cox JA (1989) Amino acid sequence of crayfish troponin I. J Biol Chem 264(3):1551–1557PubMedGoogle Scholar
  46. 46.
    Zhao Y, Yao Q, Tang X, Wang Q, Yin H, Hu Z, Lu J, Chen K (2007) Cloning and homologic analysis of Tpn I gene in silkworm Bombyx mori. Afr J Biotechnol 6(6):672–676Google Scholar
  47. 47.
    Umasuthan N, Elvitigala DAS, Revathy KS, Lee Y, Whang I, Park MA, Lee J (2013) Identification and in silico analysis of a novel troponin C like gene from Ruditapes philippinarum (Bivalvia: Veneridae) and its transcriptional response for calcium challenge. Gene 519(1):194–201PubMedCrossRefGoogle Scholar
  48. 48.
    Ruksana R, Kuroda K, Terami H, Bando T, Kitaoka S, Takaya T, Sakube Y, Kagawa H (2010) Tissue expression of four troponin I genes and their molecular interactions with two troponin C isoforms in Caenorhabditis elegans. Genes Cells 10(3):261–276CrossRefGoogle Scholar
  49. 49.
    Ma T, Zhou YZ, Xiang FY, Shen J, Zhou JL (2008) Molecular cloning of troponin I gene from the hard tick Rhipicephalus haemaphysaloides and its distribution in it. Chin J Vet Sci 28(2):160–162Google Scholar
  50. 50.
    Yoon TH, Bae J, Kang HE, Choi JH, Lee CI, Park WG, Kim HW (2015) Molecular characterization of four genes highly expressed during megalopa stage in Chinese mitten crab, Eriocheir sinensis. Ocean Sci J 50(1):61–75CrossRefGoogle Scholar
  51. 51.
    Liang XQ, Li YJ, Zhou ZM (1988) The larval development of Exopalaemon carinicauda. J Fish China 12(2):157–168Google Scholar
  52. 52.
    Hooper SL, Thuma JB (2005) Invertebrate muscles: muscle specific genes and proteins. Physiol Rev 85(3):1001–1060PubMedCrossRefGoogle Scholar
  53. 53.
    Jung H, Lyons RE, Hurwood DA, Mather PB (2013) Genes and growth performance in crustacean species: a review of relevant genomic studies in crustaceans and other taxa. Rev Aquac 5(2):77–110CrossRefGoogle Scholar
  54. 54.
    Tidball JG (2005) Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol 98(5):1900–1908PubMedCrossRefGoogle Scholar
  55. 55.
    Willott RH, Gomes AVChang AN, Parvatiyar MS, Pinto JR, Potter JD (2010) Mutations in troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 48(5):882PubMedCrossRefGoogle Scholar
  56. 56.
    Perry MJ, Tait J, Hu J, White SC, Medler S (2009) Skeletal muscle fiber types in the ghost crab, Ocypode quadrata: implications for running performance. J Exp Biol 212(5):673–683PubMedCrossRefGoogle Scholar
  57. 57.
    Fan S, Zhang D, Guo Y, Liu B, Yu D (2015) Characterization of the bay scallop (Argopecten irradians concentricus Say) transcriptome and identification of growth-related genes. Mar Genomics 24(1):225–227PubMedCrossRefGoogle Scholar
  58. 58.
    Ahamed F, Ohtomi J (2012) Growth patterns and longevity of the pandalid shrimp Plesionika izumiae (Decapoda: Caridea). J Crustac Biol 32(5):733–740CrossRefGoogle Scholar
  59. 59.
    Martin Marti S, Onteru SK, Du ZQ, Rothschild MF (2010) Short communication. SNP analyses of the 5HT1R and STAT genes in Pacific white shrimp, Litopenaeus vannamei. Span J Agric Res 8(1):53–55CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory for Sustainable Utilizatiyhuon of Marine Fisheries Resources, Yellow Sea Fisheries Research Institute, Ministry of Agriculture and RuralChinese Academy of Fishery SciencesQingdaoPeople’s Republic of China
  2. 2.Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations