Advertisement

Molecular Biology Reports

, Volume 46, Issue 1, pp 679–686 | Cite as

Synthesis and SPAR exploration of new semicarbazone-triazole hybrids in search of potent antioxidant, antibacterial and antifungal agents

  • Jihed Brahmi
  • Sana Bakari
  • Soumaya Nasri
  • Habib Nasri
  • Adel Kadri
  • Kaïss AouadiEmail author
Original Article
  • 59 Downloads

Abstract

A new series of semicarbazone-triazole hybrid derivatives have been synthesized by condensation between heterocyclic aldehydes and the commercial semicarbazide hydrochloride. The in vitro antioxidant activity of these species was tested using 1,1-diphenyl-2-picrylhydrazyl radical, 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and Ferric reducing antioxidant power assays and their antimicrobial activity against different microbial strains was carried out. Furthermore, molecular properties prediction and drug likeness were also determinated using Molinspiration. Among such derivatives, compounds (E)-2-(4-((1-(2,6-dimethylphenyl)-1H-1,2,3-triazol-4-yl)methoxy)benzylidene)hydrazine carboxamide (4c), and (E)-2-(4-((1-(2-methoxyphenyl)-1-H-1,2,3-triazol-4-yl)methoxy)benzylidene)hydrazine-carboxamide (4e) exhibit excellent scavenging ability, especially with IC50 = 1.57 ± 1.66 mg/mL (4c) and IC50 = 1.82 ± 0.15 mg/mL (4e) with 1,1-diphenyl-2-picrylhydrazyl radical and IC50 = 1.90 ± 1.33 mg/mL (4c) with 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) as compared to the standards butylhydroxytoluene (IC50 = 1.60 ± 1.98 mg/mL) and Trolox (IC50 = 1.45 ± 1.33 mg/mL), respectively. The antimicrobial assay results, show that compounds 4c and 4e highlighted the most interesting profile with the potent activity was obtained against S. enteritidis (1.56-fold) and then M. luteus (1.45-fold) which are significantly higher than the positive control, chloramphenicol. By the other hand, the synthesized semicarbazone derivatives met the Lipinski’s rule criteria by presenting good drug likeness and bioactivity scores. The structure–property–activity relationships have been carried out in order to determine the effect of various substituents on the molecular and the biological properties. All these investigations confirm that our synthetic semicarbazone can be explored for generating new potential drug with good oral bioavailability.

Graphical abstract

Keywords

Semicarbazone Antimicrobial activity Antioxidant activity Molecular properties prediction Lipinski Rule Bioactivity scores 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11033_2018_4523_MOESM1_ESM.pdf (758 kb)
Supplementary material 1 (PDF 757 KB)

References

  1. 1.
    Ahsan MJ, Stables JP (2013) Psychomotor seizure test, neurotoxicity and in vitro neuroprotection assay of some semicarbazone analogues. Cent Nerv Syst Agents Med Chem 13:141–147CrossRefGoogle Scholar
  2. 2.
    Ahsan MJ (2013) Semicarbazone analogs as anticonvulsant agents: a review. Cent Nerv Syst Agents Med Chem 13:148–158CrossRefGoogle Scholar
  3. 3.
    Ahsan MJ, Khalilullah H, Yasmin S, Jadav SS, Stables JP, Govindasamy J (2013) Synthesis and anticonvulsant evaluation of 2-(substituted benzylidene/ethylidene)-N-(substituted phenyl)hydrazinecarboxamide analogues. Med Chem Res 22:2746–2754CrossRefGoogle Scholar
  4. 4.
    Pandeya SN, Yogeeswari P, Stables JP (2014) Synthesis and anticonvulsant activity of 4-bromophenyl substituted aryl semicarbazones. Eur J Med Chem 35:879–886CrossRefGoogle Scholar
  5. 5.
    Amir M, Ahsan MJ, Ali I (2010) Synthesis of N1-(3-chloro-4-flourophenyl)-N4-substituted semicarbazones as novel anticonvulsant agents. Indian J Chem 49B:1509–1514Google Scholar
  6. 6.
    Rajak H, Deshmukh R, Veerasamy R, Sharma AK, Mishra P, Kharya MD (2010) Novel semicarbazones based 2,5-disubstituted-1,3,4-oxadiazoles: one more step towards establishing four binding site pharmacophoric model hypothesis for anticonvulsant activity. Bioorg Med Chem Lett 20:4168–4172CrossRefGoogle Scholar
  7. 7.
    Rajak H, Thakur BS, Singh A, Raghuvanshi K, Sah AK, Veerasamy R, Sharma PC, Pawar RS, Khary MD (2013) Novel limonene and citral based 2,5-disubstituted-1,3,4-oxadiazoles: a natural product coupled approach to semicarbazones for antiepileptic activity. Bioorg Med Chem Lett 23:864–868CrossRefGoogle Scholar
  8. 8.
    Shukla S, Srivastava RS, Shrivastava SK, Sodhi A, Kumar P (2012) Synthesis, characterization and antiproliferative activity of 1,2-naphthoquinone and its derivatives. Appl Biochem Biotechnol 167:1430–1445CrossRefGoogle Scholar
  9. 9.
    Liu Z, Wu S, Wang Y, Li R, Wang J, Wang L, Zhao Y, Gong P (2014) Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents. Eur J Med Chem 87:782–793CrossRefGoogle Scholar
  10. 10.
    Ahsan MJ, Amir M, Bakht MA, Samy JG, Hasan MZ, Nomani MS (2016) Synthesis and antimicrobial activity of N1-(3-chloro-4-fluorophenyl)-N4-substituted semicarbazone derivatives. Arab J Chem 9:S861–S866CrossRefGoogle Scholar
  11. 11.
    Dutta S, Padhye S, Priyadarsini KI, Newton C (2005) Antioxidant and antiproliferative activity of curcumin semicarbazone. Bioorg Med Chem Lett 15:2738–2744CrossRefGoogle Scholar
  12. 12.
    Sriram D, Yogeeswari P, Thirumurugan R (2004) Synthesis and anticonvulsant and neurotoxicity evaluation of N4-phthalimido phenyl (thio) semicarbazides. Bioorg Med Chem Lett 14:3923–3924CrossRefGoogle Scholar
  13. 13.
    Kumar D, Beena, Khare G, Kidwai S, Tyagi AK, Singh R, Rawat DS (2014) Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur J Med Chem 81:301–313Google Scholar
  14. 14.
    Kasuga NC, Sekino K, Koumo C, Shimada N, Ishikawa M (2001) Synthesis, structural characterization and antimicrobial activities of 4- and 6-coordinate nickel(II) complexes with three thiosemicarbazones and semicarbazone ligands. J Inorg Biochem 84:55–65CrossRefGoogle Scholar
  15. 15.
    Afrasiabi Z, Sinn EKK, Lin W, Campana Ma Y, Padhye CS (2005) Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: synthesis, structure, spectroscopy and biological activity. J Inorg Biochem 9:1526–1531CrossRefGoogle Scholar
  16. 16.
    Alomar K, Gaumet V, Allain M, Bouet G, Landreau A (2012) Synthesis, crystal structure, characterisation, and antifungal activity of 3-thiophene aldehyde semicarbazone (3STCH), 2,3-thiophene dicarboxaldehyde bis(semicarbazone) (2,3BSTCH2) and their nickel (II) complexes. J Inorg Biochem 115:36–43CrossRefGoogle Scholar
  17. 17.
    Kinfe HH, Belay YH, Joseph JS, Mukwevho E (2013) Evaluation of the Influence of thiosemicarbazone–triazole hybrids on genes implicated in lipid oxidation and accumulation as potential anti-obesity agents. Bioorg Med Chem Lett 23:5275–5278CrossRefGoogle Scholar
  18. 18.
    Giguère JB, Thibeault D, Cronier F, Marois JS, Auger M, Morin JF (2009) Synthesis of [2]- and [3] rotaxanes through sonogashira coupling. Tetrahedron Lett 50:5497–5500CrossRefGoogle Scholar
  19. 19.
    Lal K, Yadav P, Kumar A (2016) Synthesis, characterization and antimicrobial activity of 4-((1-benzyl/phenyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde analogues. Med Chem Res 25:644–652CrossRefGoogle Scholar
  20. 20.
    Ghannay S, Bakari S, Ghabi A, Kadri A, Msaddek M, Aouadi K (2017) Stereoselective synthesis of enantiopure N-substituted pyrrolidin-2,5-dione derivatives by 1,3-dipolar cycloaddition and assessment of their in vitro antioxidant and antibacterial activities. Bioorg Med Chem Lett 27:2302–2307CrossRefGoogle Scholar
  21. 21.
    Ghannay S, Bakari S, Msaddek M, Vidal S, Kadri A, Aouadi K (2018) Design, synthesis, molecular properties and in vitro antioxidant and antibacterial potential of novel enantiopure isoxazolidine derivatives. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2018.03.013 Google Scholar
  22. 22.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  23. 23.
    Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623CrossRefGoogle Scholar
  24. 24.
    Karamać M, Koleva L, Kancheva VD, Amarowicz R (2017) The structure–antioxidant activity relationship of ferulates. Molecules 22:527–534CrossRefGoogle Scholar
  25. 25.
    Khan I, Ali S, Hameed S, Rama N, Hussain M, Wadood A, Uddin R, Ul-Haq Z, Khan A (2010) Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur J Med Chem 45:5200–5207CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jihed Brahmi
    • 1
  • Sana Bakari
    • 2
  • Soumaya Nasri
    • 3
  • Habib Nasri
    • 3
  • Adel Kadri
    • 2
    • 4
  • Kaïss Aouadi
    • 1
    • 5
    Email author
  1. 1.Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Faculty of Sciences of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
  3. 3.Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of MonastirUniversity of MonastirMonastirTunisia
  4. 4.College of Science and Arts in BaljurashiAl Baha UniversityAl BahaSaudi Arabia
  5. 5.Department of ChemistryQassim University-College of ScienceBuraidahSaudi Arabia

Personalised recommendations