Molecular Biology Reports

, Volume 46, Issue 1, pp 1459–1475 | Cite as

Mesenchymal stem cell dysfunction in diabetes

  • Arman Fijany
  • Lohrasb R. Sayadi
  • Nima Khoshab
  • Derek A. Banyard
  • Ashkaun Shaterian
  • Michael Alexander
  • Johnathan R. T. Lakey
  • Keyianoosh Z. Paydar
  • Gregory R. D. Evans
  • Alan D. WidgerowEmail author


Diabetes mellitus (DM) is a chronic disease that results in a variety of systemic complications. Recently, stem cell-based therapies have been proposed as potential modalities to manage DM related complications. Mesenchymal stem cell (MSC) based therapies are often considered as an ideal stem cell-based treatment for DM management due to their immunosuppressive characteristics, anti-inflammatory properties and differentiation potential. While MSCs show tremendous promise, the underlying functional deficits of MSCs in DM patients is not well understood. Using the MEDLINE database to define these functional deficits, our search yielded 1826 articles of which 33 met our inclusion criteria. This allowed us to review the topic and illuminate four major molecular categories by which MSCs are compromised in both Type 1 DM and Type II DM models which include: (1) changes in angiogenesis/vasculogenesis, (2) altered pro-inflammatory cytokine secretion, (3) increased oxidative stress markers and (4) impaired cellular differentiation and decreased proliferation. Knowledge of the deficits in MSC function will allow us to more clearly assess the efficacy of potential biologic therapies for reversing these dysfunctions when treating the complications of diabetic disease.


Diabetes Mesenchymal stem cell MSC Dysfunction 


Compliance with ethical standards

Conflict of interest

The authors whose names are listed immediately above certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.


  1. 1.
    Centers for Disease Control and Prevention (2017) National Diabetes Statistics Report (2017): estimate of diabetes and its burden in the United States.
  2. 2.
    Federation ID (2017) IDF Diabetes Atlas. International Diabetes Federation, BrusselsGoogle Scholar
  3. 3.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820. Google Scholar
  4. 4.
    van de Vyver M (2017) Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev 26(14):1042–1053. Google Scholar
  5. 5.
    Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109(8):923–940. Google Scholar
  6. 6.
    Mizuno H, Tobita M, Uysal AC (2012) Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30(5):804–810. Google Scholar
  7. 7.
    Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Konari N, Fujimiya M (2016) Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 6:34842. Google Scholar
  8. 8.
    de Paula DRM, Capuano V, Filho DM, Carneiro A, de Oliveira Crema V, de Oliveira LF, Rodrigues ARA, Montano N, da Silva VJD (2017) Biological properties of cardiac mesenchymal stem cells in rats with diabetic cardiomyopathy. Life Sci 188:45–52. Google Scholar
  9. 9.
    Baban B, Liu JY, Payne S, Abebe W, Yu JC, Mozaffari MS (2016) Status of stem cells in diabetic nephropathy: predictive and preventive potentials. EPMA J 7:21. Google Scholar
  10. 10.
    Beltramo E, Lopatina T, Berrone E, Mazzeo A, Iavello A, Camussi G, Porta M (2014) Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro. Acta Diabetol 51(6):1055–1064. Google Scholar
  11. 11.
    Parajuli A, Liu C, Li W, Gu X, Lai X, Pei S, Price C, You L, Lu XL, Wang L (2015) Bone’s responses to mechanical loading are impaired in type 1 diabetes. Bone 81:152–160. Google Scholar
  12. 12.
    Thomas SWAD, Lakey JRT, Krishnan R, Banyard DA, Salibian AA, Wirth GA, Toranto J, Paydar K, Evans GRD (2014) Adipose derived stem cells and diabetic wound healing: a promising therapeutic modality. CellR4 2(6):e1309Google Scholar
  13. 13.
    Kuo YR, Wang CT, Cheng JT, Kao GS, Chiang YC, Wang CJ (2016) Adipose-derived stem cells accelerate diabetic wound healing through the induction of autocrine and paracrine effects. Cell Transpl 25(1):71–81. Google Scholar
  14. 14.
    Gao D, Gu C, Wu Y, Xie J, Yao B, Li J, Feng C, Wang J, Wu X, Huang S, Fu X (2014) Mesenchymal stromal cells enhance wound healing by ameliorating impaired metabolism in diabetic mice. Cytotherapy 16(11):1467–1475. Google Scholar
  15. 15.
    Hoffstad O, Mitra N, Walsh J, Margolis DJ (2015) Diabetes, lower-extremity amputation, and death. Diab Care 38(10):1852–1857. Google Scholar
  16. 16.
    Kim H, Han JW, Lee JY, Choi YJ, Sohn YD, Song M, Yoon YS (2015) Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transpl 24(8):1571–1584. Google Scholar
  17. 17.
    Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T (2016) Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int 2016:6901286. Google Scholar
  18. 18.
    Fernandes M, Valente SG, Sabongi RG, Gomes Dos Santos JB, Leite VM, Ulrich H, Nery AA, da Silva Fernandes MJ (2018) Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration. Neural Regen Res 13(1):100–104. Google Scholar
  19. 19.
    Lin CS, Xin ZC, Dai J, Lue TF (2013) Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol 28(9):1109–1116. Google Scholar
  20. 20.
    Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, Zhao GB, Ma ZJ (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6:55. Google Scholar
  21. 21.
    Cheng R, Ma JX (2015) Angiogenesis in diabetes and obesity. Rev Endocr Metab Disord 16(1):67–75. Google Scholar
  22. 22.
    Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R, Doetschman T (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478Google Scholar
  23. 23.
    Rezaie J, Mehranjani MS, Rahbarghazi R, Shariatzadeh MA (2018) Angiogenic and restorative abilities of human mesenchymal stem cells were reduced following treatment with serum from diabetes mellitus type 2 patients. J Cell Biochem 119(1):524–535. Google Scholar
  24. 24.
    Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F (2017) Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med 21(2):349–363. Google Scholar
  25. 25.
    Kase S, He S, Sonoda S, Kitamura M, Spee C, Wawrousek E, Ryan SJ, Kannan R, Hinton DR (2010) AlphaB-crystallin regulation of angiogenesis by modulation of VEGF. Blood 115(16):3398–3406. Google Scholar
  26. 26.
    Shi Y, Su C, Wang JT, Du B, Dong LJ, Liu AH, Li XR (2015) Temporal and spatial changes in VEGF, alphaA- and alphaB-crystallin expression in a mouse model of oxygen-induced retinopathy. Int J Clin Exp Med 8(3):3349–3359Google Scholar
  27. 27.
    DiPersio JF (2011) Diabetic stem-cell “mobilopathy”. N Engl J Med 365(26):2536–2538. Google Scholar
  28. 28.
    Rezabakhsh A, Cheraghi O, Nourazarian A, Hassanpour M, Kazemi M, Ghaderi S, Faraji E, Rahbarghazi R, Avci CB, Bagca BG, Garjani A (2017) Type 2 diabetes inhibited human mesenchymal stem cells angiogenic response by over-activity of the autophagic pathway. J Cell Biochem 118(6):1518–1530. Google Scholar
  29. 29.
    Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28(2):223–232. Google Scholar
  30. 30.
    Yuan SM (2015) Alpha-smooth muscle actin and ACTA2 gene expressions in vasculopathies. Braz J Cardiovasc Surg 30(6):644–649. Google Scholar
  31. 31.
    Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5(4):628–635. Google Scholar
  32. 32.
    Gong J, Meng HB, Hua J, Song ZS, He ZG, Zhou B, Qian MP (2014) The SDF-1/CXCR4 axis regulates migration of transplanted bone marrow mesenchymal stem cells towards the pancreas in rats with acute pancreatitis. Mol Med Rep 9(5):1575–1582. Google Scholar
  33. 33.
    De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8(3):73–87. Google Scholar
  34. 34.
    Jumabay M, Moon JH, Yeerna H, Bostrom KI (2015) Effect of diabetes mellitus on adipocyte-derived stem cells in rat. J Cell Physiol 230(11):2821–2828. Google Scholar
  35. 35.
    Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, Lennon J, Radiya-Dixit A, Raghvendra S, Maan ZN, Hu MS, Rajadas J, Rodrigues M, Gurtner GC (2014) Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther 5(3):79. Google Scholar
  36. 36.
    Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G, Odorisio T (2013) Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen 21(4):545–553. Google Scholar
  37. 37.
    Jin P, Zhang X, Wu Y, Li L, Yin Q, Zheng L, Zhang H, Sun C (2010) Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation. Transpl Proceed 42(7):2745–2752. Google Scholar
  38. 38.
    Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR, Widgerow AD (2016) Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature. J Plast Reconstr Aesthet Surg 69(2):170–179. Google Scholar
  39. 39.
    Guo J, Nguyen A, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR, Widgerow AD (2016) Stromal vascular fraction: a regenerative reality? Part 2: mechanisms of regenerative action. J Plast Reconstr Aesthet Surg 69 (2):180–188. Google Scholar
  40. 40.
    Duh E, Aiello LP (1999) Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 48(10):1899–1906Google Scholar
  41. 41.
    Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Controll Release 264:112–126. Google Scholar
  42. 42.
    Tahergorabi Z, Khazaei M (2012) Imbalance of angiogenesis in diabetic complications: the mechanisms. Int J Prev Med 3(12):827–838Google Scholar
  43. 43.
    Xu L, Kanasaki K, Kitada M, Koya D (2012) Diabetic angiopathy and angiogenic defects. Fibrogenes Tissue Repair 5(1):13. Google Scholar
  44. 44.
    Wirostko B, Wong TY, Simo R (2008) Vascular endothelial growth factor and diabetic complications. Prog Retin Eye Res 27(6):608–621. Google Scholar
  45. 45.
    Merino-Gonzalez C, Zuniga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, Salomon C, Aguayo C (2016) Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol 7:24. Google Scholar
  46. 46.
    Kota SK, Meher LK, Jammula S, Kota SK, Krishna SV, Modi KD (2012) Aberrant angiogenesis: the gateway to diabetic complications. Indian J Endocrinol Metab 16(6):918–930. Google Scholar
  47. 47.
    Endo M, Yanagisawa K, Tsuchida K, Okamoto T, Matsushita T, Higuchi M, Matsuda A, Takeuchi M, Makita Z, Koike T (2001) Increased levels of vascular endothelial growth factor and advanced glycation end products in aqueous humor of patients with diabetic retinopathy. Horm Metab Res 33 (5):317–322. Google Scholar
  48. 48.
    Selim KM, Sahan D, Muhittin T, Osman C, Mustafa O (2010) Increased levels of vascular endothelial growth factor in the aqueous humor of patients with diabetic retinopathy. Ind J Ophthalmol 58(5):375–379. Google Scholar
  49. 49.
    Mironidou-Tzouveleki M, Tsartsalis S, Tomos C (2011) Vascular endothelial growth factor (VEGF) in the pathogenesis of diabetic nephropathy of type 1 diabetes mellitus. Curr Drug Targets 12(1):107–114Google Scholar
  50. 50.
    Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R (2013) Pathophysiology of diabetic retinopathy. ISRN Ophthalmol. Google Scholar
  51. 51.
    Mazzeo A, Beltramo E, Iavello A, Carpanetto A, Porta M (2015) Molecular mechanisms of extracellular vesicle-induced vessel destabilization in diabetic retinopathy. Acta Diabetol 52(6):1113–1119. Google Scholar
  52. 52.
    Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94(5):678–685. Google Scholar
  53. 53.
    Lai J, Chen F, Chen J, Ruan G, He M, Chen C, Tang J, Wang DW (2017) Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling. Sci Rep 7:44473. Google Scholar
  54. 54.
    Kim YS, Kwon JS, Hong MH, Kang WS, Jeong HY, Kang HJ, Jeong M, Ahn Y (2013) Restoration of angiogenic capacity of diabetes-insulted mesenchymal stem cells by oxytocin. BMC Cell Biol 14:38. Google Scholar
  55. 55.
    Danalache BA, Paquin J, Donghao W, Grygorczyk R, Moore JC, Mummery CL, Gutkowska J, Jankowski M (2007) Nitric oxide signaling in oxytocin-mediated cardiomyogenesis. Stem Cells 25(3):679–688. Google Scholar
  56. 56.
    Cattaneo MG, Chini B, Vicentini LM (2008) Oxytocin stimulates migration and invasion in human endothelial cells. Br J Pharmacol 153(4):728–736. Google Scholar
  57. 57.
    Yuan Y, Shi M, Li L, Liu J, Chen B, Chen Y, An X, Liu S, Luo R, Long D, Zhang W, Newsholme P, Cheng J, Lu Y (2016) Mesenchymal stem cell-conditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/PGC-1alpha pathway. Clin Sci 130(23):2181–2198. Google Scholar
  58. 58.
    Khan M, Ali F, Mohsin S, Akhtar S, Mehmood A, Choudhery MS, Khan SN, Riazuddin S (2013) Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res Ther 4(3):58. Google Scholar
  59. 59.
    Madhira SL, Challa SS, Chalasani M, Nappanveethl G, Bhonde RR, Ajumeera R, Venkatesan V (2012) Promise(s) of mesenchymal stem cells as an in vitro model system to depict pre-diabetic/diabetic milieu in WNIN/GR-Ob mutant rats. PloS ONE 7(10):e48061. Google Scholar
  60. 60.
    Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10(3):244–258. Google Scholar
  61. 61.
    Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552–570. Google Scholar
  62. 62.
    van de Vyver M, Niesler C, Myburgh KH, Ferris WF (2016) Delayed wound healing and dysregulation of IL6/STAT3 signalling in MSCs derived from pre-diabetic obese mice. Mol Cell Endocrinol 426:1–10. Google Scholar
  63. 63.
    Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Lorenzo M (2008) Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 57(12):3211–3221. Google Scholar
  64. 64.
    Moller DE (2000) Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 11(6):212–217Google Scholar
  65. 65.
    Qiao YC, Chen YL, Pan YH, Tian F, Xu Y, Zhang XX, Zhao HL (2017) The change of serum tumor necrosis factor alpha in patients with type 1 diabetes mellitus: a systematic review and meta-analysis. PloS ONE 12(4):e0176157. Google Scholar
  66. 66.
    Ko KI, Coimbra LS, Tian C, Alblowi J, Kayal RA, Einhorn TA, Gerstenfeld LC, Pignolo RJ, Graves DT (2015) Diabetes reduces mesenchymal stem cells in fracture healing through a TNFalpha-mediated mechanism. Diabetologia 58(3):633–642. Google Scholar
  67. 67.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Investig 112(12):1821–1830. Google Scholar
  68. 68.
    Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21(12):1443–1455. Google Scholar
  69. 69.
    Oda N, Imamura S, Fujita T, Uchida Y, Inagaki K, Kakizawa H, Hayakawa N, Suzuki A, Takeda J, Horikawa Y, Itoh M (2008) The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism 57(2):268–273. Google Scholar
  70. 70.
    Aleidi S, Issa A, Bustanji H, Khalil M, Bustanji Y (2015) Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi Pharm J 23(3):250–256. Google Scholar
  71. 71.
    Duncan BB, Schmidt MI, Pankow JS, Bang H, Couper D, Ballantyne CM, Hoogeveen RC, Heiss G (2004) Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 53(9):2473–2478Google Scholar
  72. 72.
    Yu L, Tu Q, Han Q, Zhang L, Sui L, Zheng L, Meng S, Tang Y, Xuan D, Zhang J, Murray D, Shen Q, Cheng J, Kim SH, Dong LQ, Valverde P, Cao X, Chen J (2015) Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells 33(1):240–252. Google Scholar
  73. 73.
    Zhang B, Liu N, Shi H, Wu H, Gao Y, He H, Gu B, Liu H (2016) High glucose microenvironments inhibit the proliferation and migration of bone mesenchymal stem cells by activating GSK3beta. J Bone Miner Metab 34(2):140–150. Google Scholar
  74. 74.
    Huang L, Li C (2000) Leptin: a multifunctional hormone. Cell Res 10(2):81–92. Google Scholar
  75. 75.
    Meek TH, Morton GJ (2012) Leptin, diabetes, and the brain. Indian J Endocrinol Metab 16(Suppl 3):S534–S542. Google Scholar
  76. 76.
    Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW, Rothman DL, Shulman GI (2014) Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med 20(7):759–763. Google Scholar
  77. 77.
    Flier JS (2012) Hormone resistance in diabetes and obesity: insulin, leptin, and FGF21. Yale J Biol Med 85(3):405–414Google Scholar
  78. 78.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. Google Scholar
  79. 79.
    Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, Bianco A, Daniele A (2014) New insight into adiponectin role in obesity and obesity-related diseases. BioMed Res Int 2014:658913. Google Scholar
  80. 80.
    Denu RA, Hematti P (2016) Effects of oxidative stress on mesenchymal stem cell biology. Oxid Med Cell Longev 2016:2989076. Google Scholar
  81. 81.
    Ha H, Hwang IA, Park JH, Lee HB (2008) Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diab Res Clin Pract 82(Suppl 1):S42–S45. Google Scholar
  82. 82.
    Lee HB, Yu MR, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14(8 Suppl 3):S241–S245Google Scholar
  83. 83.
    Hakki Kalkan I, Suher M (2013) The relationship between the level of glutathione, impairment of glucose metabolism and complications of diabetes mellitus. Pak J Med Sci 29(4):938–942Google Scholar
  84. 84.
    Ali F, Aziz F, Wajid N (2017) Effect of type 2 diabetic serum on the behavior of Wharton’s jelly-derived mesenchymal stem cells in vitro. Chronic Dis Transl Med 3(2):105–111. Google Scholar
  85. 85.
    Yan J, Tie G, Wang S, Messina KE, DiDato S, Guo S, Messina LM (2012) Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice. J Am Heart Assoc 1(6):e002238. Google Scholar
  86. 86.
    Schroder K, Wandzioch K, Helmcke I, Brandes RP (2009) Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29 (2):239–245. Google Scholar
  87. 87.
    Nowotny K, Jung T, Hohn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5(1):194–222. Google Scholar
  88. 88.
    Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):1–14. Google Scholar
  89. 89.
    Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375(Pt 3):581–592. Google Scholar
  90. 90.
    Xue J, Rai V, Singer D, Chabierski S, Xie J, Reverdatto S, Burz DS, Schmidt AM, Hoffmann R, Shekhtman A (2011) Advanced glycation end product recognition by the receptor for AGEs. Structure 19(5):722–732. Google Scholar
  91. 91.
    Aikawa E, Fujita R, Asai M, Kaneda Y, Tamai K (2016) Receptor for advanced glycation end products-mediated signaling impairs the maintenance of bone marrow mesenchymal stromal cells in diabetic model mice. Stem Cells Dev 25(22):1721–1732. Google Scholar
  92. 92.
    Stolzing A, Sellers D, Llewelyn O, Scutt A (2010) Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs 191(6):453–465. Google Scholar
  93. 93.
    Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 39(12):871–875. Google Scholar
  94. 94.
    Banyard DA, Salibian AA, Widgerow AD, Evans GR (2015) Implications for human adipose-derived stem cells in plastic surgery. J Cell Mol Med 19(1):21–30. Google Scholar
  95. 95.
    Deng X, Xu M, Shen M, Cheng J (2018) Effects of type 2 diabetic serum on proliferation and osteogenic differentiation of mesenchymal stem cells. J Diab Res 2018:5765478. Google Scholar
  96. 96.
    Moseley KF, Doyle ME, Jan De Beur SM (2018) Diabetic serum from older women increases adipogenic differentiation in mesenchymal stem cells. Endocr Res. Google Scholar
  97. 97.
    Barbagallo I, Li Volti G, Galvano F, Tettamanti G, Pluchinotta FR, Bergante S, Vanella L (2017) Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes. Exp Biol Med 242(10):1079–1085. Google Scholar
  98. 98.
    Thornalley PJ (1998) Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol 44(7):1013–1023Google Scholar
  99. 99.
    Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219Google Scholar
  100. 100.
    Lee H, Lee YJ, Choi H, Seok JW, Yoon BK, Kim D, Han JY, Lee Y, Kim HJ, Kim JW (2017) SCARA5 plays a critical role in the commitment of mesenchymal stem cells to adipogenesis. Sci Rep 7(1):14833. Google Scholar
  101. 101.
    Brown ML, Yukata K, Farnsworth CW, Chen DG, Awad H, Hilton MJ, O’Keefe RJ, Xing L, Mooney RA, Zuscik MJ (2014) Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus. PloS ONE 9(6):e99656. Google Scholar
  102. 102.
    Silva JC, Sampaio P, Fernandes MH, Gomes PS (2015) The osteogenic priming of mesenchymal stem cells is impaired in experimental diabetes. J Cell Biochem 116(8):1658–1667. Google Scholar
  103. 103.
    Kornicka K, Houston J, Marycz K (2018) Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev 14(3):337–345. Google Scholar
  104. 104.
    Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA (2017) Diabetes and bone health: latest evidence and clinical implications. Ther Adv Musculoskelet Dis 9(3):67–74. Google Scholar
  105. 105.
    Wang W, Zhang X, Zheng J, Yang J (2010) High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Mol Cell Biochem 338(1–2):115–122. Google Scholar
  106. 106.
    Wang J, Wang B, Li Y, Wang D, Lingling E, Bai Y, Liu H (2013) High glucose inhibits osteogenic differentiation through the BMP signaling pathway in bone mesenchymal stem cells in mice. EXCLI J 12:584–597Google Scholar
  107. 107.
    Cramer C, Freisinger E, Jones RK, Slakey DP, Dupin CL, Newsome ER, Alt EU, Izadpanah R (2010) Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev 19(12):1875–1884. Google Scholar
  108. 108.
    Gu Z, Jiang J, Xia Y, Yue X, Yan M, Tao T, Cao X, Da Z, Liu H, Liu H, Miao Y, Li L, Wang Z (2013) p21 is associated with the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells from non-obese diabetic mice. Exp Clin Endocrinol Diab 121(10):607–613. Google Scholar
  109. 109.
    Meng Y, Ji J, Tan W, Guo G, Xia Y, Cheng C, Gu Z, Wang Z (2016) Involvement of autophagy in the procedure of endoplasmic reticulum stress introduced apoptosis in bone marrow mesenchymal stem cells from nonobese diabetic mice. Cell Biochem Funct 34(1):25–33. Google Scholar
  110. 110.
    Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL (2002) Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 105(3):373–379Google Scholar
  111. 111.
    Gupta N, Mansoor S, Sharma A, Sapkal A, Sheth J, Falatoonzadeh P, Kuppermann B, Kenney M (2013) Diabetic retinopathy and VEGF. Open Ophthalmol J 7:4–10. Google Scholar
  112. 112.
    Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diab Care 32(9):1663–1668. Google Scholar
  113. 113.
    Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A, Jahoor F (2011) Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diab Care 34(1):162–167. Google Scholar
  114. 114.
    Rennert RC, Januszyk M, Sorkin M, Rodrigues M, Maan ZN, Duscher D, Whittam AJ, Kosaraju R, Chung MT, Paik K, Li AY, Findlay M, Glotzbach JP, Butte AJ, Gurtner GC (2016) Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies. Nat Commun 7:11945. Google Scholar
  115. 115.
    Banyard DA, Sarantopoulos CN, Borovikova AA, Qiu X, Wirth GA, Paydar KZ, Haun JB, Evans GR, Widgerow AD (2016) Phenotypic analysis of stromal vascular fraction after mechanical shear reveals stress-induced progenitor populations. Plast Reconstr Surg 138(2):237e–247e. Google Scholar
  116. 116.
    Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18 (9).
  117. 117.
    Mulder GD, Lee DK, Jeppesen NS (2012) Comprehensive review of the clinical application of autologous mesenchymal stem cells in the treatment of chronic wounds and diabetic bone healing. Int Wound J 9(6):595–600. Google Scholar
  118. 118.
    Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Arman Fijany
    • 1
  • Lohrasb R. Sayadi
    • 1
  • Nima Khoshab
    • 1
  • Derek A. Banyard
    • 1
  • Ashkaun Shaterian
    • 1
  • Michael Alexander
    • 2
  • Johnathan R. T. Lakey
    • 2
  • Keyianoosh Z. Paydar
    • 1
  • Gregory R. D. Evans
    • 1
    • 2
  • Alan D. Widgerow
    • 1
    • 2
    • 3
    Email author
  1. 1.UC Irvine Department of Plastic SurgeryCenter for Tissue EngineeringOrangeUSA
  2. 2.UC Irvine Department of Surgery & Biomedical EngineeringOrangeUSA
  3. 3.University of CaliforniaOrangeUSA

Personalised recommendations