Advertisement

Characterize carbapenem-resistant Klebsiella pneumoniae isolates for nosocomial pneumonia and their Gram-negative bacteria neighbors in the respiratory tract

  • Dongmei Zhao
  • Yan Zuo
  • Zhongxin WangEmail author
  • Jiabin LiEmail author
Original Article
  • 37 Downloads

Abstract

This study was conducted to perform an epidemiological survey of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates for nosocomial pneumonia (NP) and visit their Gram-negative bacteria neighbors (GNNs) from the respiratory tracts. Pulsed-field gel electrophoresis and multi locus sequence typing were performed to evaluate the clonal relationships of these isolates. Statistical methods were then used to understand their possible relationship between CRKP and their GNNs. Among the 63 CRKP isolates, 84.1% produced a KPC-2 carbapenemase gene, followed by blaNDM-1 and blaIMP-38 like. 13 different STs and 29 clones were identified. Less heterogeneous clone backgrounds were observed in 53 KPC-2 K. pneumoniae isolates, and 6 STs have been found to contain KPC-2, of which the predominant ST11 harbored 47 KPC-2-producing K. pneumoniae isolates. Particularly, the two infrequent isolates co-possessing blaKPC-2 and blaIMP-38 like shared a different clonal relationship. 87 GNNs isolates of CRKP were established, the analysis present that different strains showed significant or no difference with CRKP upon antibiotics susceptibility. Conclusion, ST11 harboring KPC-2-producing K. pneumoniae isolates were dominant for NP, and both clonal spread and horizontal transfer contributed to the dissemination of CRKP. However, additional studies are needed to explore the biological relationship with their GNNs.

Keywords

Carbapenem-resistant Klebsiella pneumoniae Nosocomial pneumonia Gram-negative bacteria Biological relationship 

Notes

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 81673242).

Supplementary material

11033_2018_4515_MOESM1_ESM.doc (442 kb)
Supplementary material 1 (DOC 442 KB)

References

  1. 1.
    Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O’Grady NP, Bartlett JG (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63:e61–e111CrossRefGoogle Scholar
  2. 2.
    Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308CrossRefGoogle Scholar
  3. 3.
    Guitor AK, Wright GD (2018) Antimicrobial resistance and respiratory infections. Chest 154:1202–1212CrossRefGoogle Scholar
  4. 4.
    O’Donnell JN, Rhodes NJ, Lopez J, Jett R, Scheetz MH (2018) Carbapenems vs. alternative β-lactams for the treatment of nosocomial pneumonia: a systematic review and meta-analysis. Int J Antimicrob Agents 52:451-458.5CrossRefGoogle Scholar
  5. 5.
    Pang F, Jia XQ, Zhao QG, Zhang Y (2018) Factors associated to prevalence and treatment of carbapenem-resistant Enterobacteriaceae infections: a seven years retrospective study in three tertiary care hospitals. Ann Clin Microbiol Antimicrob 17:13CrossRefGoogle Scholar
  6. 6.
    Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, Polsky B, Adams-Haduch JM, Doi Y (2012) Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother.  https://doi.org/10.1128/AAC.06268-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ahmed SMA, Abdelrahman SS, Saad DM, Osman IS, Osman MG, Khalil EAG (2018) Etiological trends and patterns of antimicrobial resistance in respiratory infections. Open Microbiol J 12:34–40CrossRefGoogle Scholar
  8. 8.
    de Maio Carrilho CM, de Oliveira LM, Gaudereto J, Perozin JS, Urbano MR, Camargo CH, Grion CM, Levin AS, Costa SF (2016) A prospective study of treatment of carbapenem-resistant Enterobacteriaceae infections and risk factors associated with outcome. BMC Infect Dis 16:629CrossRefGoogle Scholar
  9. 9.
    Dickson RP, Huffnagle GB (2015) The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog 11:e1004923CrossRefGoogle Scholar
  10. 10.
    Ruppé É, Woerther P-L, Barbier F (2015) Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 5:21CrossRefGoogle Scholar
  11. 11.
    Andrade LN, Vitali L, Gaspar GG, Bellissimo-Rodrigues F, Martinez R, Darini AL (2014) Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J Clin Microbiol 52:2530–2535CrossRefGoogle Scholar
  12. 12.
    Mammina C, Bonura C, Vivoli AR, Di Bernardo F, Sodano C, Saporito MA, Verde MS, Saporito L, Cracchiolo AN (2013) Co-colonization with carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii in intensive care unit patients. Scand J Infect Dis 45:629–634CrossRefGoogle Scholar
  13. 13.
    Marchaim D, Perez F, Lee J, Bheemreddy S, Hujer AM, Rudin S, Hayakawa K, Lephart PR, Blunden C (2012) “Swimming in resistance”: co-colonization with carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii or Pseudomonas aeruginosa. Am J Infect Control 40:830–835CrossRefGoogle Scholar
  14. 14.
    Poirel L, Aires-de-Sousa M, Kubyda P, Kieffer N, Nordmann P (2018) Screening and characterization of multidrug-resistant Gram-negative bacteria from a remote African area, São Tomé and Príncipe. Antimicrob Agents Chemother 62:e01021–18PubMedGoogle Scholar
  15. 15.
    Yang J, Ye L, Wang W, Luo Y, Zhang Y, Han L (2011) Diverse prevalence of 16S rRNA methylase genes armA and rmtB amongst clinical multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolates. Int J Antimicrob Agents 38:348–351CrossRefGoogle Scholar
  16. 16.
    Venturelli OS, Carr AC, Fisher G, Hsu RH, Lau R, Bowen BP, Hromada S, Northen T, Arkin AP (2018) Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14:e8157CrossRefGoogle Scholar
  17. 17.
    Mohammed WS, Ziganshina EE, Shagimardanova EI, Gogoleva NE, Ziganshin AM (2018) Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae). Sci Rep 8:10073CrossRefGoogle Scholar
  18. 18.
    Kiddee A, Assawatheptawee K, Na-Udom A, Treebupachatsakul P, Wangteeraprasert A, Walsh TR, Niumsup PR (2018) Risk Factors for gastrointestinal colonization and acquisition of carbapenem-resistant gram-negative bacteria among patients in intensive care units in Thailand. Antimicrob Agents Chemother 62:e00341–e00318CrossRefGoogle Scholar
  19. 19.
    Torres A, Zhong N, Pachl J, Timsit JF, Kollef M, Chen Z, Song J, Taylor D, Laud PJ, Stone GG, Chow JW (2018) Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis 18:285–295CrossRefGoogle Scholar
  20. 20.
    Clinical and Laboratory Standards Institute (2016) Performance standards for antimicrobial susceptibility testing: twenty-sixth informational supplement M100-S26. CLSI, WayneGoogle Scholar
  21. 21.
    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281CrossRefGoogle Scholar
  22. 22.
    Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L (2014) Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:1198–1208CrossRefGoogle Scholar
  23. 23.
    Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362:1804–1813CrossRefGoogle Scholar
  24. 24.
    Jones RN (2010) Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator associated bacterial pneumonia. Clin Infect Dis 51(Suppl 1):S81–S87CrossRefGoogle Scholar
  25. 25.
    Katchanov J, Asar L, Klupp EM, Both A, Rothe C, König C, Rohde H, Kluge S, Maurer FP (2018) Carbapenem-resistant Gram-negative pathogens in a German university medical center: prevalence, clinical implications and the role of novel β-lactam/β-lactamase inhibitor combinations. PLoS ONE 13:e0195757CrossRefGoogle Scholar
  26. 26.
    Pontikis K, Karaiskos I, Bastani S, Dimopoulos G, Kalogirou M, Katsiari M, Oikonomou A, Poulakou G, Roilides E, Giamarellou H (2014) Outcomes of critically ill intensive care unit patients treated with fosfomyc in for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int J Antimicrob Agents 43:52–59CrossRefGoogle Scholar
  27. 27.
    Li H, Zhang J, Liu Y, Zheng R, Chen H, Wang X, Wang Z, Cao B, Wang H (2014) Molecular characteristics of carbapenemase-producing Enterobacteriaceae in China from 2008 to 2011: predominance of KPC-2 enzyme. Diagn Microbiol Infect Dis 78:63–65CrossRefGoogle Scholar
  28. 28.
    Pitout JD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae: a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59:5873–5884CrossRefGoogle Scholar
  29. 29.
    Liu J, Yu J, Chen F, Yu J, Simner P, Tamma P, Liu Y, Shen L (2018) Emergence and establishment of KPC-2-producing ST11 Klebsiella pneumoniae in a general hospital in Shanghai, China. Eur J Clin Microbiol Infect Dis 37:293–299CrossRefGoogle Scholar
  30. 30.
    Andrade LN, Curiao T, Ferreira JC, Longo JM, Climaco EC, Martinez R, Bellissimo-Rodrigues F, Basile-Filho A, Evaristo MA, Del Peloso PF, Ribeiro VB, Barth AL, Paula MC, Baquero F, Canton R, Darini AL, Coque TM (2011) Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother 55:3579–3583CrossRefGoogle Scholar
  31. 31.
    Jeon JH, Lee JH, Lee JJ, Park KS, Karim AM, Lee CR, Jeong BC, Lee SH (2015) Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 16:9654–9692CrossRefGoogle Scholar
  32. 32.
    Qin S, Fu Y, Zhang Q, Qi H, Wen JG, Xu H, Xu L, Zeng L, Tian H, Rong L, Li Y, Shan L, Xu H, Yu Y, Feng X, Liu HM (2014) High incidence and endemic spread of NDM-1-positive Enterobacteriaceae in Henan Province, China. Antimicrob. Agents Chemother 58:4275–4282CrossRefGoogle Scholar
  33. 33.
    Liu Y, Wan LG, Deng Q, Cao XW, Yu Y, Xu QF (2015) First description of NDM-1-, KPC-2-, VIM-2- and IMP-4-producing Klebsiella pneumoniae strains in a single Chinese teaching hospital. Epidemiol Infect 143:376–384CrossRefGoogle Scholar
  34. 34.
    Hawkey PM, Xiong J, Ye H, Li H, M’Zali FH (2001) Occurrence of a new metallo-beta-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People’s Republic of China. FEMS Microbiol Lett 194:53–57PubMedGoogle Scholar
  35. 35.
    Jian Z, Li Y, Liu W, Li H, Zhang Y, Li Y, Gu X, Peng W (2014) Detection of the novel IMP-38 among carbapenemase-producing Enterobacteriaceae in a University Hospital, China. J Infect Dev Ctries 8:1044–1048CrossRefGoogle Scholar
  36. 36.
    World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, GenevaGoogle Scholar
  37. 37.
    Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37:384–406CrossRefGoogle Scholar
  38. 38.
    Yurtsev EA, Conwill A, Gore J (2016) Oscillatory dynamics in a bacterial cross-protection mutualism. Proc Natl Acad Sci USA 113:6236–6241CrossRefGoogle Scholar
  39. 39.
    Perry JA, Westman EL, Wright GD (2014) The antibiotic resistome: what’s new? Curr Opin Microbiol 21:45–50CrossRefGoogle Scholar
  40. 40.
    Hafza N, Challita C, Dandachi I, Bousaab M, Dahdouh E, Daoud Z (2018) Competition assays between ESBL-producing E. coil and K. pneumoniae isolates collected from Lebanese elder: an additional cost on fitness. J Infect Public Health 11:393–397CrossRefGoogle Scholar
  41. 41.
    Osawa K, Shigemura K, Kitagawa K, Fukuda T, Takasaka A, Wakabayashi S, Sato K, Yamamichi F, Shirakawa T, Fujisawa M (2018) Molecular characteristics of carbapenem-resistant Pseudomonas aeruginosaisolated from urine in Hyogo, Japan. Int J Urol.  https://doi.org/10.1111/iju.13818 CrossRefPubMedGoogle Scholar
  42. 42.
    Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K (2015) Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother 47:81–97CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Infectious DiseaseThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
  2. 2.Department of Clinical LaboratoryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina

Personalised recommendations