Molecular Biology Reports

, Volume 46, Issue 1, pp 587–596 | Cite as

Insulin action on protein synthesis and its association with eIF5A expression and hypusination

  • André Ricardo Gomes de Proença
  • Karina Danielle Pereira
  • Leticia Meneguello
  • Leticia Tamborlin
  • Augusto Ducati LuchessiEmail author
Original Article


The hormone insulin plays a central role in the metabolism of carbohydrates, lipids, and proteins. In relation to protein metabolism, insulin stimulates amino acid uptake and activates protein synthesis in responsive cells by modulation of signal transduction pathways, such as associated to Akt/PkB, mTOR, S6Ks, 4E-BP1, and several translation initiation/elongation factors. In this context, there is no information on direct cellular treatment with insulin and effects on eukaryotic translation initiation factor 5A (eIF5A) regulation. The eIF5A protein contains an exclusive amino acid residue denominated hypusine, which is essential for its activity and synthesized by posttranslational modification of a specific lysine residue using spermidine as substrate. The eIF5A protein is involved in cellular proliferation and differentiation processes, as observed for satellite cells derived from rat muscles, revealing that eIF5A has an important role in muscle regeneration. The aim of this study was to determine whether eIF5A expression and hypusination are influenced by direct treatment of insulin on L6 myoblast cells. We observed that insulin increased the content of eIF5A transcripts. This effect occurred in cells treated or depleted of fetal bovine serum, revealing a positive insulin effect independent of other serum components. In addition, it was observed that hypusination follows the maintenance of eIF5A protein content in the serum depleted cells and treated with insulin. These results demonstrate that eIF5A is modulated by insulin, contributing the protein synthesis machinery control, as observed by puromycin incorporation in nascent proteins.


Myoblast cells Insulin Protein synthesis eIF5A Hypusine 



We are grateful to São Paulo Research Foundation (FAPESP) for the financial support. We would like to thank Dr. Rui Curi (USP, Brazil) for L6 cells, Dr. Fernando M. Simabuco (UNICAMP, Brazil) for puromycin and mouse monoclonal anti-puromycin; Dr. Raghavendra G. Mirmira and Dr. Bernhard Maier (IU School of Medicine, USA) for rabbit polyclonal anti-hypusine antibody (IU-88); Dr. Sandro R. Valentini (UNESP, Brazil) for GC7, spermidine and aminoguanidine.

Author contributions

ADL conceived and supervised the study; ADL and ARGP designed the experiments; ARGP, KDP, LM, and LT performed the experiments; ADL, ARGP, KDP, LM, and LT analyzed the data, interpreted the results and wrote the manuscript.


This work was supported by Grant 2010/18095-0 from the São Paulo Research Foundation (FAPESP). A.R.G.P., K.D.P, L.M, and L.T are recipients of FAPESP scholarships 2013/20504-3, 2013/23620-4, 2014/27154-0 and 2017/21914-1 respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Best CH (1930) A brief review of certain physiological properties of insulin. Can Med Assoc J 23(2):141–145Google Scholar
  2. 2.
    Proud CG, Denton RM (1997) Molecular mechanisms for the control of translation by insulin. Biochem J 328(Pt 2):329–341Google Scholar
  3. 3.
    Proud CG (2006) Regulation of protein synthesis by insulin. Biochem Soc Trans 34(Pt 2):213–216. Google Scholar
  4. 4.
    Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077. Google Scholar
  5. 5.
    Magnuson B, Ekim B, Fingar DC (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441(1):1–21. Google Scholar
  6. 6.
    Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15(21):2852–2864. Google Scholar
  7. 7.
    Kim DH, Sabatini DM (2004) Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Top Microbiol Immunol 279:259–270Google Scholar
  8. 8.
    Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5(10):827–835. Google Scholar
  9. 9.
    Welsh GI, Stokes CM, Wang X, Sakaue H, Ogawa W, Kasuga M, Proud CG (1997) Activation of translation initiation factor eIF2B by insulin requires phosphatidyl inositol 3-kinase. FEBS Lett 410(2–3):418–422Google Scholar
  10. 10.
    Shen WH, Boyle DW, Wisniowski P, Bade A, Liechty EA (2005) Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. J Endocrinol 185(2):275–289. Google Scholar
  11. 11.
    Shen W, Mallon D, Boyle DW, Liechty EA (2002) IGF-I and insulin regulate eIF4F formation by different mechanisms in muscle and liver in the ovine fetus. Am J Physiol Endocrinol Metab 283(3):E593–E603. Google Scholar
  12. 12.
    Minich WB, Balasta ML, Goss DJ, Rhoads RE (1994) Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc Natl Acad Sci USA 91(16):7668–7672Google Scholar
  13. 13.
    Sullivan JM, Alousi SS, Hikade KR, Bahu NJ, Rafols JA, Krause GS, White BC (1999) Insulin induces dephosphorylation of eukaryotic initiation factor 2alpha and restores protein synthesis in vulnerable hippocampal neurons after transient brain ischemia. J Cereb Blood Flow Metab 19(9):1010–1019. Google Scholar
  14. 14.
    Towle CA, Mankin HJ, Avruch J, Treadwell BV (1984) Insulin promoted decrease in the phosphorylation of protein synthesis initiation factor eIF-2. Biochem Biophys Res Commun 121(1):134–140Google Scholar
  15. 15.
    Harris TE, Chi A, Shabanowitz J, Hunt DF, Rhoads RE, Lawrence JC (2006) mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin. EMBO J 25(8):1659–1668. Google Scholar
  16. 16.
    Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen PK, Viero G, Tebaldi T, Offenhäuser N, Rozman J, Rathkolb B, Neschen S, Klingenspor M, Wolf E, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Quattrone A, Falciani F, Biffo S (2015) eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun 6:8261. Google Scholar
  17. 17.
    Raught B, Gingras AC, Gygi SP, Imataka H, Morino S, Gradi A, Aebersold R, Sonenberg N (2000) Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J 19(3):434–444. Google Scholar
  18. 18.
    Vary TC, Lynch CJ (2007) Nutrient signaling components controlling protein synthesis in striated muscle. J Nutr 137(8):1835–1843Google Scholar
  19. 19.
    Morley SJ, Traugh JA (1990) Differential stimulation of phosphorylation of initiation factors eIF-4F, eIF-4B, eIF-3, and ribosomal protein S6 by insulin and phorbol esters. J Biol Chem 265(18):10611–10616Google Scholar
  20. 20.
    Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J, Hershey JW, Blenis J, Pende M, Sonenberg N (2006) The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 25(12):2781–2791. Google Scholar
  21. 21.
    Holz MK, Ballif BA, Gygi SP, Blenis J (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123(4):569–580. Google Scholar
  22. 22.
    Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S, Lockett SJ, Sonenberg N, Colburn NH (2003) The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23(1):26–37Google Scholar
  23. 23.
    Dennis MD, Jefferson LS, Kimball SR (2012) Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem 287(51):42890–42899. Google Scholar
  24. 24.
    Piazzi M, Bavelloni A, Faenza I, Blalock W, Urbani A, D’Aguanno S, Fiume R, Ramazzotti G, Maraldi NM, Cocco L (2010) eEF1A phosphorylation in the nucleus of insulin-stimulated C2C12 myoblasts: Ser53 is a novel substrate for protein kinase C βI. Mol Cell Proteomics 9(12):2719–2728. Google Scholar
  25. 25.
    Peters HI, Chang YW, Traugh JA (1995) Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity. Eur J Biochem 234(2):550–556Google Scholar
  26. 26.
    Chang YW, Traugh JA (1997) Phosphorylation of elongation factor 1 and ribosomal protein S6 by multipotential S6 kinase and insulin stimulation of translational elongation. J Biol Chem 272(45):28252–28257Google Scholar
  27. 27.
    Venema RC, Peters HI, Traugh JA (1991) Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem 266(19):12574–12580Google Scholar
  28. 28.
    Chang YW, Traugh JA (1998) Insulin stimulation of phosphorylation of elongation factor 1 (eEF-1) enhances elongation activity. Eur J Biochem 251(1–2):201–207Google Scholar
  29. 29.
    Levenson RM, Nairn AC, Blackshear PJ (1989) Insulin rapidly induces the biosynthesis of elongation factor 2. J Biol Chem 264(20):11904–11911Google Scholar
  30. 30.
    Browne GJ, Proud CG (2004) A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 24(7):2986–2997Google Scholar
  31. 31.
    Klier H, Wohl T, Eckerskorn C, Magdolen V, Lottspeich F (1993) Determination and mutational analysis of the phosphorylation site in the hypusine-containing protein Hyp2p. FEBS Lett 334(3):360–364Google Scholar
  32. 32.
    Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6(3):115–123Google Scholar
  33. 33.
    Park MH, Wolff EC, Folk JE (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4(2):95–104Google Scholar
  34. 34.
    Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JW (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11(6):3105–3114Google Scholar
  35. 35.
    Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139(2):161–169. Google Scholar
  36. 36.
    Sasaki K, Abid MR, Miyazaki M (1996) Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett 384(2):151–154Google Scholar
  37. 37.
    Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459(7243):118–121. Google Scholar
  38. 38.
    Jasiulionis MG, Luchessi AD, Moreira AG, Souza PP, Suenaga AP, Correa M, Costa CA, Curi R, Costa-Neto CM (2007) Inhibition of eukaryotic translation initiation factor 5A (eIF5A) hypusination impairs melanoma growth. Cell Biochem Funct 25(1):109–114. Google Scholar
  39. 39.
    Zuk D, Jacobson A (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J 17(10):2914–2925. Google Scholar
  40. 40.
    Lipowsky G, Bischoff FR, Schwarzmaier P, Kraft R, Kostka S, Hartmann E, Kutay U, Gorlich D (2000) Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J 19(16):4362–4371. Google Scholar
  41. 41.
    Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112(Pt 14):2369–2380Google Scholar
  42. 42.
    Luchessi AD, Cambiaghi TD, Hirabara SM, Lambertucci RH, Silveira LR, Baptista IL, Moriscot AS, Costa-Neto CM, Curi R (2009) Involvement of eukaryotic translation initiation factor 5A (eIF5A) in skeletal muscle stem cell differentiation. J Cell Physiol 218(3):480–489. Google Scholar
  43. 43.
    Parreiras-e-Silva LT, Luchessi AD, Reis RI, Oliver C, Jamur MC, Ramos RG, Oliveira EB, Curi R, Costa-Neto CM (2010) Evidences of a role for eukaryotic translation initiation factor 5A (eIF5A) in mouse embryogenesis and cell differentiation. J Cell Physiol 225(2):500–505. Google Scholar
  44. 44.
    Huang Y, Higginson DS, Hester L, Park MH, Snyder SH (2007) Neuronal growth and survival mediated by eIF5A, a polyamine-modified translation initiation factor. Proc Natl Acad Sci USA 104(10):4194–4199. Google Scholar
  45. 45.
    Li Y, Fu L, Li JB, Qin Y, Zeng TT, Zhou J, Zeng ZL, Chen J, Cao TT, Ban X, Qian C, Cai Z, Xie D, Huang P, Guan XY (2014) Increased expression of EIF5A2, via hypoxia or gene amplification, contributes to metastasis and angiogenesis of esophageal squamous cell carcinoma. Gastroenterology 146(7):1701–1713.e1709. Google Scholar
  46. 46.
    Hoque M, Park JY, Chang YJ, Luchessi AD, Cambiaghi TD, Shamanna R, Hanauske-Abel HM, Holland B, Pe’ery T, Tian B, Mathews MB (2017) Regulation of gene expression by translation factor eIF5A: Hypusine-modified eIF5A enhances nonsense-mediated mRNA decay in human cells. Translation 5(2):e1366294. Google Scholar
  47. 47.
    de Almeida OP, Toledo TR, Rossi D, Rossetto DeB, Watanabe TF, Galvão FC, Medeiros AI, Zanelli CF, Valentini SR (2014) Hypusine modification of the ribosome-binding protein eIF5A, a target for new anti-inflammatory drugs: understanding the action of the inhibitor GC7 on a murine macrophage cell line. Curr Pharm Des 20(2):284–292Google Scholar
  48. 48.
    Kaiser A (2012) Translational control of eIF5A in various diseases. Amino Acids 42(2–3):679–684. Google Scholar
  49. 49.
    Nakanishi S, Cleveland JL (2016) Targeting the polyamine-hypusine circuit for the prevention and treatment of cancer. Amino Acids. Google Scholar
  50. 50.
    Imam S, Mirmira RG, Jaume JC (2014) Eukaryotic translation initiation factor 5A inhibition alters physiopathology and immune responses in a “humanized” transgenic mouse model of type 1 diabetes. Am J Physiol Endocrinol Metab 306(7):E791–E798. Google Scholar
  51. 51.
    Olsen ME, Filone CM, Rozelle D, Mire CE, Agans KN, Hensley L, Connor JH (2016) Polyamines and hypusination are required for ebolavirus gene expression and replication. MBio 7(4):e00882-16. Google Scholar
  52. 52.
    Hanauske-Abel HM, Saxena D, Palumbo PE, Hanauske AR, Luchessi AD, Cambiaghi TD, Hoque M, Spino M, D’Alliessi Gandolfi D, Heller DS, Singh S, Park MH, Cracchiolo BM, Tricta F, Connelly J, Popowicz AM, Cone RA, Holland B, Pe’ery T, Mathews MB (2013) Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS ONE 8(9):e74414. Google Scholar
  53. 53.
    Hoque M, Hanauske-Abel HM, Palumbo P, Saxena D, D’Alliessi Gandolfi D, Park MH, Pe’ery T, Mathews MB (2009) Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A. Retrovirology 6:90. Google Scholar
  54. 54.
    Mathews MB, Hershey JW (2015) The translation factor eIF5A and human cancer. Biochim Biophys Acta 1849(7):836–844. Google Scholar
  55. 55.
    Saxena D, Spino M, Tricta F, Connelly J, Cracchiolo BM, Hanauske AR, D’Alliessi Gandolfi D, Mathews MB, Karn J, Holland B, Park MH, Pe’ery T, Palumbo PE, Hanauske-Abel HM (2016) Drug-based lead discovery: the novel ablative antiretroviral profile of deferiprone in HIV-1-infected cells and in HIV-infected treatment-naive subjects of a double-blind, placebo-controlled, randomized exploratory trial. PLoS ONE 11(5):e0154842. Google Scholar
  56. 56.
    Mémin E, Hoque M, Jain MR, Heller DS, Li H, Cracchiolo B, Hanauske-Abel HM, Pe’ery T, Mathews MB (2014) Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation. Cancer Res 74(2):552–562. Google Scholar
  57. 57.
    Jao DL, Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 97(3):583–598. Google Scholar
  58. 58.
    Zanelli CF, Maragno AL, Gregio AP, Komili S, Pandolfi JR, Mestriner CA, Lustri WR, Valentini SR (2006) eIF5A binds to translational machinery components and affects translation in yeast. Biochem Biophys Res Commun 348(4):1358–1366. Google Scholar
  59. 59.
    Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, Dever TE (2013) eIF5A promotes translation of polyproline motifs. Mol Cell 51(1):35–45. Google Scholar
  60. 60.
    Nishiki Y, Farb TB, Friedrich J, Bokvist K, Mirmira RG, Maier B (2013) Characterization of a novel polyclonal anti-hypusine antibody. SpringerPlus 2:421. Google Scholar
  61. 61.
    Park MH, Wolff EC, Lee YB, Folk JE (1994) Antiproliferative effects of inhibitors of deoxyhypusine synthase. Inhibition of growth of Chinese hamster ovary cells by guanyl diamines. J Biol Chem 269(45):27827–27832Google Scholar
  62. 62.
    Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, Dondero RS, Lewis EC, Dinarello CA, Nadler JL, Mirmira RG (2010) The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 120(6):2156–2170. Google Scholar
  63. 63.
    Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, Hornberger TA (2011) Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J 25(3):1028–1039. Google Scholar
  64. 64.
    Goodman CA, Hornberger TA (2013) Measuring protein synthesis with SUnSET: a valid alternative to traditional techniques? Exercise Sport Sci Rev 41 (2):107–115. Google Scholar
  65. 65.
    Jakus J, Wolff EC, Park MH, Folk JE (1993) Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono-guanylated diamines and polyamines. J Biol Chem 268(18):13151–13159Google Scholar
  66. 66.
    Shi XP, Yin KC, Ahern J, Davis LJ, Stern AM, Waxman L (1996) Effects of N1-guanyl-1,7-diaminoheptane, an inhibitor of deoxyhypusine synthase, on the growth of tumorigenic cell lines in culture. Biochim Biophys Acta 1310(1):119–126Google Scholar
  67. 67.
    Boisvert FM, Ahmad Y, Gierliński M, Charrière F, Lamont D, Scott M, Barton G, Lamond AI (2012) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteom 11(3):M111.011429. Google Scholar
  68. 68.
    Gerner EW, Mamont PS, Bernhardt A, Siat M (1986) Post-translational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cells. Biochem J 239(2):379–386Google Scholar
  69. 69.
    Duncan RF, Hershey JW (1986) Changes in eIF-4D hypusine modification or abundance are not correlated with translational repression in HeLa cells. J Biol Chem 261(27):12903–12906Google Scholar
  70. 70.
    Goulart-Silva F, Teixeira Sda S, Luchessi AD, Dos Santos LR, Rebelato E, Carpinelli AR, Nunes MT (2012) Potential contribution of translational factors to triiodo-L-thyronine-induced insulin synthesis by pancreatic beta cells. Thyroid 22(6):637–642. Google Scholar
  71. 71.
    Landau G, Bercovich Z, Park MH, Kahana C (2010) The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. J Biol Chem 285(17):12474–12481. Google Scholar
  72. 72.
    Lee SK, Lee J, Lee SI, Bae WJ, Lee YM, Park JS, Park SJ, Min SK, Kim EC (2009) N(1)-guanyl-1,7,-diamineoheptane, an inhibitor of deoxyhypusine synthase, suppresses differentiation and induces apoptosis via mitochondrial and AMPK pathways in immortalized and malignant human oral keratinocytes. J Oral Pathol Med 38(10):792–800. Google Scholar
  73. 73.
    Nishimura K, Murozumi K, Shirahata A, Park MH, Kashiwagi K, Igarashi K (2005) Independent roles of eIF5A and polyamines in cell proliferation. Biochem J 385(Pt 3):779–785. Google Scholar
  74. 74.
    Schuller AP, Wu CC, Dever TE, Buskirk AR, Green R (2017) eIF5A functions globally in translation elongation and termination. Mol Cell 66(2):194–205 e195. Google Scholar
  75. 75.
    Diggle TA, Moule SK, Avison MB, Flynn A, Foulstone EJ, Proud CG, Denton RM (1996) Both rapamycin-sensitive and -insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells. Biochem J 316(Pt 2):447–453Google Scholar
  76. 76.
    Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745. Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratory of Biotechnology, School of Applied SciencesUniversity of Campinas (UNICAMP)LimeiraBrazil
  2. 2.Institute of BiosciencesSão Paulo State University (UNESP)Rio ClaroBrazil
  3. 3.Laboratório de Biotecnologia, Faculdade de Ciências AplicadasUniversidade Estadual de CampinasLimeiraBrazil

Personalised recommendations