Advertisement

Preliminary study on the effect of nucleolin specific aptamermiRNA let-7d chimera on Janus kinase-2 expression level and activity in gastric cancer (MKN-45) cells

  • Mahsa Ramezanpour
  • Puyan Daei
  • Maryam Tabarzad
  • Korosh Khanaki
  • Ali Elmi
  • Mahmood Barati
Original Article

Abstract

Recently, much attention has been focused on the use of miRNAs in cancer treatment. The role of proto-oncogene Janus kinase-2 (JAK-2) in proliferation and survival of gastric cancer has been previously documented. The aim of this study was to evaluate the effect of a chimera consisted of nucleolin specific aptamer (NCL-Apt) and miRNA let-7d on JAK2 expression level and activity in gastric cancer cells. NCL-Apt–miRNA let-7d chimera was prepared by two methods. Gastric cancer (MKN-45) cell line and control cell line of human dermal fibroblast (HDF) were treated with the chimera and the changes in JAK2 expression and activity were determined using real-time PCR and ELISA techniques, respectively. In MKN-45 cells, the chimera caused significant decrease in JAK2 expression level and activity compared to the aptamer alone and miRNA mimic negative control. Nevertheless, transfected miRNA let-7d showed remarkable reduction in the expression level of JAK2 in comparison with control state in both MKN-45 and HDF, confirmed unspecific effect of let-7d on normal and cancerous cells. With regard to the synergic effect of this chimera on JAK2 activity, it might be viewed as a therapeutic candidate in gastric cancer. However, further studies are warranted to prove it.

Keywords

Nucleolin specific aptamer (NCL-Apt) MiRNA let-7d Janus kinase-2 (JAK-2) Gastric cancer 

Abbreviations

HDF

Human dermal fibroblasts

HMGA2

High-mobility group AT-hook 2

JAK-2

Janus kinase-2

NCL-Apt

Nucleolin-specific aptamer

PDGFRβ

Platelet-derived growth factor receptor β

STAT3

Signal transducer and activator of transcription 3

3′-UTR

The three prime untranslated regions

Notes

Acknowledgements

This study was performed as an MSc thesis at Faculty of Paramedicene, Guilan University of Medical Sciences (Rasht, Iran). This work was financially supported by the Research Deputy of Guilan University of Medical Sciences (Rasht, Iran) and Shahid Beheshti University of Medical Sciences (Tehran, Iran).

Compliance with ethical standards

Conflict of interest

The authors declared that there are no conflict of interest.

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefGoogle Scholar
  2. 2.
    Khademloo M, Moosazadeh M, Ahmadi M, Alizadeh-Navaei R (2018) Geographical distribution of gastric cancer in north of Iran—a cross-sectional study. World Cancer Res J 5(1):e1050Google Scholar
  3. 3.
    Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233CrossRefGoogle Scholar
  4. 4.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355Google Scholar
  5. 5.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight. Nat Rev Genet 9(2):102–114CrossRefGoogle Scholar
  6. 6.
    Zhang B, Pan X, Cobb GP, Anderson TA (2007) MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12CrossRefGoogle Scholar
  7. 7.
    Kwak PB, Iwasaki S, Tomari Y (2010) The microRNA pathway and cancer. Cancer Sci 101(11):2309–2315CrossRefGoogle Scholar
  8. 8.
    Link A, Schirrmeister W, Langner C, Varbanova M, Bornschein J, Wex T, Malfertheiner P (2015) Differential expression of microRNAs in preneoplastic gastric mucosa. Sci Rep 5:8270CrossRefGoogle Scholar
  9. 9.
    Oom AL, Humphries BA, Yang C (2014) MicroRNAs: novel players in cancer diagnosis and therapies. BioMed Res Int.  https://doi.org/10.1155/2014/959461 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schulman BRM, Esquela-Kerscher A, Slack FJ (2005) Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. Dev Dyn 234(4):1046–1054CrossRefGoogle Scholar
  11. 11.
    Sokol NS, Xu P, Jan Y-N, Ambros V (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 22(12):1591–1596CrossRefGoogle Scholar
  12. 12.
    Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67(16):7713–7722CrossRefGoogle Scholar
  13. 13.
    Zhang H-H, Wang X-J, Li G-X, Yang E, Yang N-M (2007) Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J Gastroenterol 13(20):2883CrossRefGoogle Scholar
  14. 14.
    Akao Y, Nakagawa Y, Naoe T (2006) Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29(5):903–906CrossRefGoogle Scholar
  15. 15.
    Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu C-G, Schnittger S, Haferlach T (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 105(10):3945–3950CrossRefGoogle Scholar
  16. 16.
    Park S-M, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, Dinulescu DM, Lengyel E, Peter ME (2007) Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle 6(21):2585–2590CrossRefGoogle Scholar
  17. 17.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647CrossRefGoogle Scholar
  18. 18.
    Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20):9762–9770CrossRefGoogle Scholar
  19. 19.
    Wang Y, Lu Y, Toh ST, Sung W-K, Tan P, Chow P, Chung AY, Jooi LL, Lee CG (2010) Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol 53(1):57–66CrossRefGoogle Scholar
  20. 20.
    Wang Z, Lin S, Li JJ, Xu Z, Yao H, Zhu X, Xie D, Shen Z, Sze J, Li K (2011) MYC protein inhibits transcription of the microRNA cluster MC-let-7a-1∼ let-7d via noncanonical E-box. J Biol Chem 286(46):39703–39714CrossRefGoogle Scholar
  21. 21.
    Childs G, Fazzari M, Kung G, Kawachi N, Brandwein-Gensler M, McLemore M, Chen Q, Burk RD, Smith RV, Prystowsky MB (2009) Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol 174(3):736–745CrossRefGoogle Scholar
  22. 22.
    Mu G, Liu H, Zhou F, Xu X, Jiang H, Wang Y, Qu Y (2010) Correlation of overexpression of HMGA1 and HMGA2 with poor tumor differentiation, invasion, and proliferation associated with let-7 down-regulation in retinoblastomas. Hum Pathol 41(4):493–502CrossRefGoogle Scholar
  23. 23.
    Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM (2012) Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA 109(8):3024–3029CrossRefGoogle Scholar
  24. 24.
    Di Fiore R, Drago-Ferrante R, Pentimalli F, Di Marzo D, Forte IM, Carlisi D, De Blasio A, Tesoriere G, Giordano A, Vento R (2016) Let-7d miRNA shows both antioncogenic and oncogenic functions in osteosarcoma-derived 3AB-OS cancer stem cells. J Cell Physiol 231(8):1832–1841CrossRefGoogle Scholar
  25. 25.
    Hertel J, Bartschat S, Wintsche A, Otto C, of the Bioinformatics Computer Lab TS, Stadler PF (2012) Evolution of the let-7 microRNA family. RNA Biol 9(3):231–241CrossRefGoogle Scholar
  26. 26.
    Verma A, Kambhampati S, Parmar S, Platanias LC (2003) Jak family of kinases in cancer. Cancer Metastasis Rev 22(4):423–434CrossRefGoogle Scholar
  27. 27.
    Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y, Yao H, Liu X, Ke Y, Si J (2010) MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res 20(7):784CrossRefGoogle Scholar
  28. 28.
    Judd LM, Menheniott TR, Ling H, Jackson CB, Howlett M, Kalantzis A, Priebe W, Giraud AS (2014) Inhibition of the JAK2/STAT3 pathway reduces gastric cancer growth in vitro and in vivo. PLoS ONE 9(5):e95993CrossRefGoogle Scholar
  29. 29.
    Miao L, Liu K, Xie M, Xing Y, Xi T (2014) miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2–STAT3 signaling. Cancer Immunol Immunother 63(7):699–711CrossRefGoogle Scholar
  30. 30.
    Ramezanpour M, Daei P, Khanaki K, Hosseinabadi T, Tabarzad M (2017) The relationship between Janus kinase pathways and microRNAs. Trends Pept Protein Sci 1(4):144–152Google Scholar
  31. 31.
    Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P (2012) MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther 13(5):281–288CrossRefGoogle Scholar
  32. 32.
    Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46(6):459–477CrossRefGoogle Scholar
  33. 33.
    Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86(3):151–164CrossRefGoogle Scholar
  34. 34.
    Reyes-Reyes EM, Teng Y, Bates PJ (2010) A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res. 70:8617–8629CrossRefGoogle Scholar
  35. 35.
    Hovanessian AG, Soundaramourty C, El Khoury D, Nondier I, Svab J, Krust B (2010) Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS ONE 5(12):e15787CrossRefGoogle Scholar
  36. 36.
    Watanabe T, Hirano K, Takahashi A, Yamaguchi K, Beppu M, Fujiki H, Suganuma M (2010) Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull 33(5):796–803CrossRefGoogle Scholar
  37. 37.
    Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68(7):2358–2365CrossRefGoogle Scholar
  38. 38.
    Girvan AC, Teng Y, Casson LK, Thomas SD, Jüliger S, Ball MW, Klein JB, Pierce WM, Barve SS, Bates PJ (2006) AGRO100 inhibits activation of nuclear factor-κB (NF-κB) by forming a complex with NF-κB essential modulator (NEMO) and nucleolin. Mol Cancer Ther 5(7):1790–1799CrossRefGoogle Scholar
  39. 39.
    Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100CrossRefGoogle Scholar
  40. 40.
    Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24(13):1339–1344CrossRefGoogle Scholar
  41. 41.
    Daei P, Ramezanpour M, Khanaki K, Tabarzad M, Nikokar I, Hedayati M, Elmi A (2018) Aptamer-based targeted delivery of miRNA let-7d to gastric cancer cells as a novel anti-tumor therapeutic agent. Iran J Pharm Sci 17(4):1537–1549Google Scholar
  42. 42.
    Li WX (2008) Canonical and non-canonical JAK–STAT signaling. Trends Cell Biol 18(11):545–551CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Meng X, Shi H, Li W, Ming Z, Zhong Y, Deng W, Zhang Q, Fan N, Niu Z (2016) The role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma cell line PC-9 induced by icotinib. Am J Transl Res 8(4):1730PubMedPubMedCentralGoogle Scholar
  44. 44.
    Khanna P, Chua PJ, Bay BH, Baeg GH (2015) The JAK/STAT signaling cascade in gastric carcinoma. Int J Oncol 47(5):1617–1626CrossRefGoogle Scholar
  45. 45.
    Valentino L, Pierre J (2006) JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 71(6):713–721CrossRefGoogle Scholar
  46. 46.
    Yu L, Zhu Y, Qiao M, Zhong J, Tu S, Wu Y (2004) Constitutive activation and clinical significance of Stat3 in human gastric cancer tissues and cell lines. Zhonghua yi xue za zhi 84(24):2064–2069PubMedGoogle Scholar
  47. 47.
    Vera J, Rateitschak K, Lange F, Kossow C, Wolkenhauer O, Jaster R (2011) Systems biology of JAK-STAT signalling in human malignancies. Prog Biophys Mol Biol 106(2):426–434CrossRefGoogle Scholar
  48. 48.
    Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, Buettner R, Proia D, Kowolik CM, Xin H (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16(6):487–497CrossRefGoogle Scholar
  49. 49.
    Barh D, Malhotra R, Ravi B, Sindhurani P (2010) MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol 17(1):70CrossRefGoogle Scholar
  50. 50.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756CrossRefGoogle Scholar
  51. 51.
    Liang S, He L, Zhao X, Miao Y, Gu Y, Guo C, Xue Z, Dou W, Hu F, Wu K (2011) MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS ONE 6(4):e18409CrossRefGoogle Scholar
  52. 52.
    Su B, Zhao W, Shi B, Zhang Z, Yu X, Xie F, Guo Z, Zhang X, Liu J, Shen Q (2014) Let-7d suppresses growth, metastasis, and tumor macrophage infiltration in renal cell carcinoma by targeting COL3A1 and CCL7. Mol Cancer 13(1):206CrossRefGoogle Scholar
  53. 53.
    Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T (2007) The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 282(11):8256–8264CrossRefGoogle Scholar
  54. 54.
    Wei R, Yang Q, Han B, Li Y, Yao K, Yang X, Chen Z, Yang S, Zhou J, Li M (2017) microRNA-375 inhibits colorectal cancer cells proliferation by downregulating JAK2/STAT3 and MAP3K8/ERK signaling pathways. Oncotarget 8(10):16633CrossRefGoogle Scholar
  55. 55.
    Wang X, Qiu W, Zhang G, Xu S, Gao Q, Yang Z (2015) MicroRNA-204 targets JAK2 in breast cancer and induces cell apoptosis through the STAT3/BCl-2/survivin pathway. Int J Clin Exp Pathol 8(5):5017PubMedPubMedCentralGoogle Scholar
  56. 56.
    Navarro A, Diaz T, Martinez A, Gaya A, Pons A, Gel B, Codony C, Ferrer G, Martinez C, Montserrat E (2009) Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood 114(14):2945–2951CrossRefGoogle Scholar
  57. 57.
    Esposito CL, Nuzzo S, Catuogno S, Romano S, de Nigris F, de Franciscis V (2017) STAT3 gene silencing by Aptamer-siRNA chimera as selective therapeutic for glioblastoma. Mol Ther-Nucleic Acids 10 398–411Google Scholar
  58. 58.
    Esposito CL, Cerchia L, Catuogno S, De Vita G, Dassie JP, Santamaria G, Swiderski P, Condorelli G, Giangrande PH, De Franciscis V (2014) Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther 22(6):1151–1163CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Medical Biotechnology Research Center, School of ParamedicineGuilan University of Medical SciencesRashtIran
  2. 2.Protein Technology Research CenterShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran

Personalised recommendations