Molecular Biology Reports

, Volume 46, Issue 1, pp 1167–1179 | Cite as

Differential transcriptional responses of carotenoid biosynthesis genes in the marine green alga Tetraselmis suecica exposed to redox and non-redox active metals

  • Ramaraj Sathasivam
  • Jang-Seu KiEmail author
Original Article


The green microalga, Tetraselmis suecica, is commonly used in scientific, industrial, and aquacultural purposes because of its high stress tolerance and ease of culture in wide spectrums of environments. We hypothesized that carotenoids help to protect Tetraselmis cells from environmental stress by regulating genes in biosynthetic pathways. Here, we determined three major carotenogenic genes, phytoene synthase (PSY), phytoene desaturase (PDS), and β-lycopene cyclase (LCY-B) in T. suecica, and examined the physiological parameters and gene expression responses when exposed to redox-active metals and non-redox-active metals. Phylogenetic analyses of each gene indicated that T. suecica clustered well with other green algae. Real-time PCR analysis showed that TsPSY, TsPDS, and TsLCY-B genes greatly responded to the redox-active metals in CuSO4 followed by CuCl2, but not to the non-redox-active metals. The redox-active metals strongly affected the physiology of the cells, as determined by cell counting, reactive oxygen species (ROS) imaging, and photosynthetic efficiency. This suggests that carotenoids protect the cells from oxidative damage caused by metals, thereby contributing to cell survival under various stress conditions.


Gene expression Marine green algae Carotenoids Non-redox-active metals Redox-active metals Tetraselmis suecica 



We thank Dr. H. Wang for critical comments on the early version of manuscript. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2015M1A5A1041805 and 2016R1D1A1A09920198), and by a grant from the National Institute of Fisheries Science (R2018043) funded to J.-S. Ki.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies conducted on human or animal subjects.

Supplementary material

11033_2018_4583_MOESM1_ESM.ppt (2.3 mb)
Supplementary Figures (PPT 2351 KB)
11033_2018_4583_MOESM2_ESM.doc (86 kb)
Supplementary Table 1 (DOC 86 KB)


  1. 1.
    El-Kassas HY, El-Sheekh MM (2016) Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West) Butcher grown under salinity stress. Egypt J Aquat Res 42:385–391. CrossRefGoogle Scholar
  2. 2.
    Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25:633–642. CrossRefGoogle Scholar
  3. 3.
    Fabregas J, Abalde J, Herrero C, Cabezas B, Veiga M (1984) Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture 42:207–215. CrossRefGoogle Scholar
  4. 4.
    Fabregas J, Herrero C (1985) Marine microalgae as a potential source of single cell protein (SCP). Appl Microbiol Biotechnol 23:110–113. CrossRefGoogle Scholar
  5. 5.
    Sathasivam R, Guo R, Wang H, Lim WA, Ki JS (2018) Expressed sequence tag library of the marine green algae Tetraselmis suecica: a focus on stress related genes for marine pollutions. J Appl Phycol 30:2387–2402. CrossRefGoogle Scholar
  6. 6.
    Carballo-Cardenas EC, Tuan PM, Janssen M, Wijffels RH (2003) Vitamin E (alpha-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomol Eng 20:139–147. CrossRefGoogle Scholar
  7. 7.
    Sansone C, Galasso C, Orefice I, Nuzzo G, Luongo E, Cutignano A, Romano G, Brunet C, Fontana A, Esposito F, Lanora A (2017) The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Sci Rep 7:41215. CrossRefGoogle Scholar
  8. 8.
    Montero MF, Aristizabal M, Reina GG (2011) Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single cell sorting. J Appl Phycol 23:1053–1057. CrossRefGoogle Scholar
  9. 9.
    Patidar SK, Kim SH, Kim JH, Park J, Park BS, Han MS (2018) Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum–sensing precursors and strategic improvement in lipid productivity. Biotechnol Biofuels 11:102. CrossRefGoogle Scholar
  10. 10.
    Park J, Park BS, Wang P, Patidar SK, Kim JH, Kim SH, Han MS (2017) Phycospheric native bacteria Pelagibaca bermudensis and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in co-cultivation system through mutualistic interaction. Front Plant Sci 8:289. Google Scholar
  11. 11.
    Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 387:141–154. CrossRefGoogle Scholar
  12. 12.
    Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH, Jolley DF (2008) Uptake and internalisation of copper by three marine microalgae: comparison of copper sensitive and copper tolerant species. Aquat Toxicol 89:82–93. CrossRefGoogle Scholar
  13. 13.
    Ebenezer V, Ki JS (2013) Quantification of the sub-lethal toxicity of metals and endocrine-disrupting chemicals to the marine green microalga Tetraselmis suecica. Fish Aquatic Sci 16:187–194. Google Scholar
  14. 14.
    Nassiri Y, Ginsburger-Vogel T, Mansot JL, Wery J (1996) Effects of heavy metals on Tetraselmis suecica: Ultrastructural and energy-dispersive X-ray spectroscopic studies. Biol Cell 86:151–160. CrossRefGoogle Scholar
  15. 15.
    Tsai HP, Chuang LT, Chen CN (2016) Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food Chem 192:682–690. CrossRefGoogle Scholar
  16. 16.
    Chokshi K, Pancha I, Ghosh A, Mishra S (2017) Nitrogen starvation–induced cellular crosstalk of ROS–scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnol Biofuels 10:60. CrossRefGoogle Scholar
  17. 17.
    Rodrigues E, Mariutti LRB, Mercadante AZ (2012) Scavenging capacity of marine carotenoids against reactive oxygen and nitrogen species in a membrane-mimicking system. Mar Drugs 10:1784–1798. CrossRefGoogle Scholar
  18. 18.
    Sathasivam R, Ki JS (2018) A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs 16:26. CrossRefGoogle Scholar
  19. 19.
    Sathasivam R, Kermanee P, Roytrakul S, Juntawong N (2012) Isolation and molecular identification of β-carotene producing strains of Dunaliella salina and Dunaliella bardawil. from salt soil samples by using species-specific primers and internal transcribed spacer (ITS) primers. Afr J Biotechnol 11:16677–16687. Google Scholar
  20. 20.
    Sathasivam R, Praiboon J, Chirapart A, Trakulnaleamsai S, Kermanee P, Roytrakul S, Juntawong N (2014) Screening, phenotypic and genotypic identification of β-carotene producing strains of Dunaliella salina from Thailand. Indian J Geo-Mar Sci 43:2198–2216Google Scholar
  21. 21.
    Sathasivam R, Pongpadung P, Praiboon J, Chirapart A, Trakulnaleamsai S, Roytrakul S, Juntawong N (2018) Optimizing NaCl and KNO3 concentrations for high β-carotene production in photobioreactor by Dunaliella salina KU11 isolated from saline soil sample. Chiang Mai J Sci 45:106–115Google Scholar
  22. 22.
    Osundeko O, Dean AP, Davies H, Pittman JK (2014) Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant Cell Physiol 55:1848–1857. CrossRefGoogle Scholar
  23. 23.
    Zuluaga M, Gueguen V, Pavon-Djavid G, Letourneur D (2017) Carotenoids from microalgae to block oxidative stress. BioImpacts 7:1–3. CrossRefGoogle Scholar
  24. 24.
    Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem 268:17348–17353Google Scholar
  25. 25.
    Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol 105:405–413. CrossRefGoogle Scholar
  26. 26.
    Cunningham JFX (2002) Regulation of carotenoid synthesis and accumulation in plants. Pure Appl Chem 74:1409–1417. CrossRefGoogle Scholar
  27. 27.
    Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239. CrossRefGoogle Scholar
  28. 28.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. CrossRefGoogle Scholar
  29. 29.
    Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. CrossRefGoogle Scholar
  30. 30.
    Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684. Google Scholar
  31. 31.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. CrossRefGoogle Scholar
  32. 32.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefGoogle Scholar
  33. 33.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 9:e45. CrossRefGoogle Scholar
  34. 34.
    Guo R, Ki JS (2012) Evaluation and validation of internal control genes for studying gene expression in the dinoflagellate Prorocentrum minimum using real-time PCR. Eur J Protistol 48:199–206. CrossRefGoogle Scholar
  35. 35.
    Sathasivam R, Ebenezer V, Guo R, Ki JS (2016) Physiological and biochemical responses of the freshwater green algae Closterium ehrenbergii to the common disinfectant chlorine. Ecotox Environ Safe 133:501–508. CrossRefGoogle Scholar
  36. 36.
    Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. CrossRefGoogle Scholar
  37. 37.
    Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561. CrossRefGoogle Scholar
  38. 38.
    Young JB, Kim BY, Jung IL, Park DH (2012) Metabolic roles of carotenoid produced by non-photosynthetic bacterium Gordonia alkanivorans SKF120101. J Microbiol Biotechnol 22:1471–1477. CrossRefGoogle Scholar
  39. 39.
    Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. CrossRefGoogle Scholar
  40. 40.
    Guo R, Ebenezer V, Ki JS (2012) Transcriptional responses of heat shock protein 70 (Hsp70) to thermal, bisphenol A, and copper stresses in the dinoflagellate Prorocentrum minimum. Chemosphere 89:512–520. CrossRefGoogle Scholar
  41. 41.
    Guo R, Lee M-A, Ki JS (2013) Different transcriptional responses of heat shock protein 70/90 in the marine diatom Ditylum brightwellii exposed to metal compounds and endocrine-disrupting chemicals. Chemosphere 92:535–543. CrossRefGoogle Scholar
  42. 42.
    Venn AA, Quinn J, Jones R, Bodnar A (2009) P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants. Aquat Toxicol 93:188–195. CrossRefGoogle Scholar
  43. 43.
    Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546. CrossRefGoogle Scholar
  44. 44.
    Ahmed F, Fanning K, Netzel M, Schenk PM (2015) Induced carotenoid accumulation in Dunaliella salina and Tetraselmis suecica by plant hormones and UV-C radiation. Appl Microbiol Biotechnol 99:9407–9416. CrossRefGoogle Scholar
  45. 45.
    Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797. CrossRefGoogle Scholar
  46. 46.
    Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177. CrossRefGoogle Scholar
  47. 47.
    Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40. CrossRefGoogle Scholar
  48. 48.
    Einali A, Mazang-Ghasemi S, Valizadeh J, Noorozifar M (2017) Metabolic responses and β-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts. Acta Bot Bras 31:180–190. CrossRefGoogle Scholar
  49. 49.
    Wang H, Sathasivam R, Ki JS (2017) Physiological effects of copper on the freshwater alga Closterium ehrenbergii Meneghini (Conjugatophyceae) and its potential use in toxicity assessments. Algae 32:131–137. CrossRefGoogle Scholar
  50. 50.
    Wang H, Ebenezer V, Ki JS (2018) Photosynthetic and biochemical responses of the freshwater green algae Closterium ehrenbergii Meneghini (Conjugatophyceae) exposed to the metal coppers and its implication for toxicity testing. J Microbiol 56:426–434. CrossRefGoogle Scholar
  51. 51.
    Sabat SC (1996) Copper ion inhibition of electron transport activity in sodium chloride washed photosystem II particle is partially prevented by calcium ion. Z Naturforsch 51:179 – 184. CrossRefGoogle Scholar
  52. 52.
    Maksymiec W, Baszynski T (1999) The role of Ca2+ ions in modulating changes induced in bean plants by an excess of Cu2+ ions. Chlorophyll fluorescence measurements. Physiol Plant 105:562–568. CrossRefGoogle Scholar
  53. 53.
    Guo R, Ebenezer V, Wang H, Ki JS (2017) Chlorine affects photosystem II and modulates the transcriptional levels of photosynthesis-related genes in the dinoflagellate Prorocentrum minimum. J Appl Phycol 29:153–163. CrossRefGoogle Scholar
  54. 54.
    Tracewell CA, Vrettos JS, Bautista JA, Frank HA, Brudvig GW (2001) Carotenoid photooxidation in photosystem II. Arch Biochem Biophys 385:61–69. CrossRefGoogle Scholar
  55. 55.
    Guo R, Ki JS (2013) Characterization of a novel catalase-peroxidase (KATG) gene from the dinoflagellate Prorocentrum minimum. J Phycol 49:1011–1016. Google Scholar
  56. 56.
    Campbell PG, Errécalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton–applicability of the biotic ligand model. Comp Biochem Physiol C Toxicol Pharmacol 133:189–206. CrossRefGoogle Scholar
  57. 57.
    Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. CrossRefGoogle Scholar
  58. 58.
    Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208. CrossRefGoogle Scholar
  59. 59.
    Bielen A, Remans T, Vangronsveld J, Cuypers A (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int J Mol Sci 14:6382–6413. CrossRefGoogle Scholar
  60. 60.
    Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412. CrossRefGoogle Scholar
  61. 61.
    Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allahd EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. Google Scholar
  62. 62.
    Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. CrossRefGoogle Scholar
  63. 63.
    Perales-Vela HV, Pena-Castro JM, Canizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10. CrossRefGoogle Scholar
  64. 64.
    Yang XE, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035. CrossRefGoogle Scholar
  65. 65.
    Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918. CrossRefGoogle Scholar
  66. 66.
    Pérez-Rama M, Alonso JA, Lopez CH, Vaamonde ET (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour Technol 84:265–270. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologySangmyung UniversitySeoulSouth Korea
  2. 2.Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoUSA

Personalised recommendations