Skip to main content
Log in

Cloning and characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) cDNA from green microalga Ankistrodesmus convolutus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An initial study on gene cloning and characterization of unicellular green microalga Ankistrodesmus convolutus was carried out to isolate and characterize the full-length cDNA of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) as a first step towards elucidating the structure of A. convolutus RbcS gene. The full-length of A. convolutus RbcS cDNA (AcRbcS) contained 28 bp of 5′ untranslated region (UTR), 225 bp of 3′ non-coding region, and an open reading frame of 165 amino acids consisting of a chloroplast transit peptide with 24 amino acids and a mature protein of 141 amino acids. The amino acid sequence has high identity to those of other green algae RbcS genes. The AcRbcS contained a few conserved domains including protein kinase C phosphorylation site, tyrosine kinase phosphorylation site and N-myristoylation sites. The AcRbcS was successfully expressed in Escherichia coli and a ~21 kDa of anticipated protein band was observed on SDS-PAGE. From the phylogenetic analysis of RbcS protein sequences, it was found that the RbcS of A. convolutus has closer genetic relationship with green microalgae species compared to those of green seaweed and green macroalgae species. Southern hybridization analysis revealed that the AcRbcS is a member of a small multigene family comprising of two to six members in A. convolutus genome. Under different illumination conditions, RT-PCR analysis showed that AcRbcS transcription was reduced in the dark, and drastically recovered in the light condition. Results presented in this paper established a good foundation for further study on the photosynthetic process of A. convolutus and other green algae species where little information is known on Rubisco small subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hartman FC, Harpel MR (1994) Structure, function, regulation, and assembly of d-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu Rev Biochem 63:197–234

    Article  PubMed  CAS  Google Scholar 

  2. Dean C, Pichersky E, Dunsmuir P (1989) Structure, evolution, and regulation of RbcS genes in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40:415–439

    Article  CAS  Google Scholar 

  3. Dhingra A, Portis AR, Daniell H (2004) Enhanced translation of a chloroplast expressed rbcS gene restores SSU levels and photosynthesis in nuclear antisense RbcS plants. Proc Natl Acad Sci USA 101:6315–6320

    Article  PubMed  CAS  Google Scholar 

  4. Kakinuma M, Ikeda M, Coury DA, Tominaga H, Kobayashi I, Amano H (2009) Isolation and characterization of the rbcS genes from a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta) and transient gene expression using the rbcS gene promoter. Fish Sci 75:1015–1028

    Article  CAS  Google Scholar 

  5. Watson GM, Tabita FR (1997) Microbial ribulose-1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22

    Article  PubMed  CAS  Google Scholar 

  6. Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  PubMed  CAS  Google Scholar 

  7. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354

    Article  PubMed  CAS  Google Scholar 

  8. Valentin K, Zetsche K (1990) Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta. Plant Mol Biol 15:575–584

    Article  PubMed  CAS  Google Scholar 

  9. Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 885–914

    Google Scholar 

  10. Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28

    Article  CAS  Google Scholar 

  11. Goldschmidt-Clermont M, Rahire M (1986) Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol 191:421–432

    Article  PubMed  CAS  Google Scholar 

  12. Walker TL, Becker DK, Collet C (2005) Characterization of the Dunaliella tertiolecta RbcS genes and their promoter activity in Chlamydomonas reinhardtii. Plant Cell Rep 23:727–735

    Article  PubMed  CAS  Google Scholar 

  13. Yamazaki T, Yamamoto M, Sakamoto W, Kawano S (2005) Isolation and molecular characterization of rbcS in the unicellular green alga Nannochloris bacillaris (Chlorophyta, Trebouxiophyceae). Phycol Res 53:67–76

    Article  CAS  Google Scholar 

  14. Berry-Lowe SL, McKnight TD, Shah DM, Meagher RB (1982) The nucleotide sequence, expression and evolution of one member of a multigene family encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean. J Mol Appl Genet 1:483–498

    PubMed  CAS  Google Scholar 

  15. Sugita M, Manzara T, Pichersky E, Cashmore A, Gruissem W (1987) Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato. Mol Gen Genet 209:247–256

    Article  PubMed  CAS  Google Scholar 

  16. DeRocher EJ, Qulgley F, Meche R, Bohnert HJ (1993) The six genes of the Rubisco small subunit multigene family from Mesembqnthemum crystallinum, a facultative CAM plant. Mol Gen Genet 239:450–462

    Article  PubMed  CAS  Google Scholar 

  17. Marraccini P, Courjault C, Caillet V, Lausanne F, Lepage B, Rogers WJ, Tessereau S, Deshayes A (2003) Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 41:17–25

    Article  CAS  Google Scholar 

  18. Spreitzer RJ (2003) Role of the small subunit in ribulose 1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414:141–149

    Article  PubMed  CAS  Google Scholar 

  19. Thomas-Hall S, Campbell PR, Carlens K, Kawanishi E, Swennen R, Sági L, Schenk PM (2007) Phylogenetic and molecular analysis of the ribulose-1,5-bisphosphate carboxylase small subunit gene family in banana. J Exp Bot 58:2685–2697

    Article  PubMed  CAS  Google Scholar 

  20. Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  21. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  22. Thanh T, Omar H, Abdullah MP, Chi VTQ, Noroozi M, Ky H, Napis S (2009) Rapid and effective method of RNA isolation from green microalga Ankistrodesmus convolutus. Mol Biotechnol 43:148–153

    Article  PubMed  CAS  Google Scholar 

  23. Thanh T, Chi VTQ, Abdullah MP, Omar H, Noroozi M, Ky H, Napis S (2011) Construction of cDNA library and preliminary analysis of expressed sequence tags from green microalga Ankistrodesmus convolutus Corda. Mol Biol Rep 38:177–182

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  26. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  28. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  29. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  Google Scholar 

  30. Geourjon C, Deléage G (1995) SOPMA: significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Cabios 11:681–684

    PubMed  CAS  Google Scholar 

  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  32. Ye AH, Jiang CJ, Zhu L, Yu M, Wang ZX, Deng WW, Wei CL (2009) Cloning and sequencing of a full-length cDNA encoding the RuBPCase small subunit (RbcS) in tea (Camellia sinensis). Agric Sci China 8:161–166

    CAS  Google Scholar 

  33. Minge MA, Shalchian-Tabrizi K, Torresen OK, Takishita K, Probert I, Inagaki Y, Klaveness D, Jakobsen KS (2010) A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evol Biol 10:191

    Article  PubMed  Google Scholar 

  34. Cui L, Xue L, Li J, Zhang L, Yan H (2010) Characterization of the glucose-6-phosphate isomerase (GPI) gene from the halotolerant alga Dunaliella salina. Mol Biol Rep 37:911–916

    Article  PubMed  CAS  Google Scholar 

  35. Li Y, Liao X, Chen G, Yap Y, Zhang X (2010) Cloning, expression and purification of Microcystis viridis lectin in Escherichia coli. Mol Biotechnol. doi:10.1007/s12033-010-9315-0

  36. Thapa A, Shahnawaz M, Karki P, Raj Dahal G, Golam Sharoar M, Yub Shin S, Sup Lee J, Cho B, Park IS (2008) Purification of inclusion body-forming peptides and proteins in soluble form by fusion to Escherichia coli thermostable proteins. Biotechniques 44:787–796

    Article  PubMed  CAS  Google Scholar 

  37. Novo MTM, Soares-Costa A, de Souza AQL, Figueira ACM, Molina GC, Palacios CA, Kull CR, Monteiro IF, Baldan-Pineda PH, Henrique-Silva F (2005) A complete approach for recombinant protein expression training: from gene cloning to assessment of protein functionality. Biochem Mol Biol Educ 33:34–40

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the MOSTI grant number 02-01-04-SF0041 from the Ministry of Science, Technology and Innovation, Malaysia. The first author is indebted to the Rubber Research Institute of Vietnam on the financial support for the postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhaimi Napis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanh, T., Chi, V.T.Q., Abdullah, M.P. et al. Cloning and characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) cDNA from green microalga Ankistrodesmus convolutus . Mol Biol Rep 38, 5297–5305 (2011). https://doi.org/10.1007/s11033-011-0679-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0679-4

Keywords

Navigation