Skip to main content
Log in

Silencing of PMT expression caused a surge of anatabine accumulation in tobacco

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Drastic increase of anatabine levels was observed in tobacco plants with markedly reduced nicotine concentrations through RNA silencing approaches. By down-regulation of PMT through three kinds of RNA silencing approaches, the nicotine levels decreased accordingly. In lines with slight and moderate reduction of nicotine levels, no anticipated negative linear correlation was found between anatabine and nicotine content. In lines with nicotine levels lower than 2.7 mg/g, drastic elevation of anatabine levels was found. Transcriptional levels of QPRT were unaffected in tobacco lines with surged anatabine levels. This report of an intriguing mutual relationship of nicotine and anatabine sheds new light on mechanisms between metabolic regulations in plants, and reconfirms complexity of metabolic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PMT:

Putrescine N-methyltransferase

RT-QPCR:

Real-time Quantitative PCR

References

  1. Verpoorte R (2000) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht

    Google Scholar 

  2. Ersek T, Kiraly Z (1986) Phytoalexins: warding-off compounds in plants. Physiol Plant 68:343–346. doi:10.1111/j.1399-3054.1986.tb01937.x

    Article  CAS  Google Scholar 

  3. Stitt M, Sonnewald U (1995) Regulation of metabolism in transgenic plants. Annu Rev Plant Physiol Plant Mol Biol 46:341–368. doi:10.1146/annurev.pp.46.060195.002013

    Article  CAS  Google Scholar 

  4. Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JAC, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566. doi:10.1038/nbt1033

    Article  CAS  PubMed  Google Scholar 

  5. Nugroho LH, Verpoorte R (2002) Secondary metabolism in tobacco. Plant Cell Tissue Organ Cult 68:105–125. doi:10.1023/A:1013853909494

    Article  CAS  Google Scholar 

  6. Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5:55–65. doi:10.1038/nrn1298

    Article  CAS  PubMed  Google Scholar 

  7. Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2:1074–1080. doi:10.1371/journal.pbio.0020217

    Article  CAS  Google Scholar 

  8. Powledge TM (2004) Nicotine as therapy. PLoS Biol 2:1707–1710

    CAS  Google Scholar 

  9. Dawson RF (1941) Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am J Bot 29:66–71. doi:10.2307/2436544

    Article  Google Scholar 

  10. Baldwin IT (1989) Mechanism of damage-induced alkaloid production in wild tobacco. J Chem Ecol 15:1661–1680. doi:10.1007/BF01012392

    Article  CAS  Google Scholar 

  11. Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480. doi:10.1016/S0031-9422(00)80751-7

    Article  CAS  Google Scholar 

  12. Hashimoto T, Yamada Y (1994) Alkaloid biogenesis—molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285

    CAS  Google Scholar 

  13. Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene-expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    Article  CAS  PubMed  Google Scholar 

  14. Sinclair SJ, Murphy KJ, Birch CD, Hamill JD (2008) Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana. Plant Mol Biol 44:603–617

    Article  Google Scholar 

  15. Leete E, Slattery SA (1976) Incorporation of (2–14C)- and (6–14C) nicotinic acid into the tobacco alkaloids. Biosynthesis of anatabine and α, β-dipyridyl. J Am Chem Soc 98:6326–6330. doi:10.1021/ja00436a043

    Article  CAS  PubMed  Google Scholar 

  16. Nakatani H, Malik VS (1992) Putrescine N-methyltransferase, recombinant DNA molecules encoding putrescine N-methyltrasferase, and transgenic tobaccoplants with altered nicotine content. Eur Patent 9(13):10–283

    Google Scholar 

  17. Sato F, Hashimoto T, Hachiya A, Tamura K, Choi KB, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98:367–372. doi:10.1073/pnas.011526398

    Article  CAS  PubMed  Google Scholar 

  18. Voelckel C, Krugel T, Gase K, Heidrich N, van Dam NM, Winz R, Baldwin IT (2001) Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta. Chemoecology 11:121–126. doi:10.1007/PL00001841

    Article  CAS  Google Scholar 

  19. Chintapakorn Y, Hamill JD (2003) Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol 53:87–105. doi:10.1023/B:PLAN.0000009268.45851.95

    Article  CAS  PubMed  Google Scholar 

  20. Chintapakorn Y, Hamill JD (2007) Antisense-mediated reduction in ADC activity causes minor alterations in the alkaloid profile of cultured hairy roots and regenerated transgenic plants of Nicotiana tabacum. Phytochemistry 68:2465–2479. doi:10.1016/j.phytochem.2007.05.025

    Article  CAS  PubMed  Google Scholar 

  21. Wang P, Liang Z, Zeng J, Li W, Sun X, Miao Z, Tang K (2008) Generation of tobacco lines with widely different reduced nicotine levels via RNA silencing approaches. J Biosci 33:177–184. doi:10.1007/s12038-008-0035-6

    Article  PubMed  Google Scholar 

  22. Saunders JA, Blume DE (1981) Quantitation of major tobacco alkaloids by high-performance liquid chromatography. J Chromatogr A 205:147–154. doi:10.1016/S0021-9673(00)81822-1

    Article  CAS  Google Scholar 

  23. Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé D, Oksman-Caldentey K (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600. doi:10.1073/pnas.1032967100

    Article  CAS  PubMed  Google Scholar 

  24. De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inze D, Goossens A, Hilson P (2005) Exploration of jasmonate signaling via automated and standardized transient expression assays in tobacco cells. Plant J 44:1065–1076. doi:10.1111/j.1365-313X.2005.02586.x

    Article  PubMed  Google Scholar 

  25. Hakkinen ST, Tilleman S, Swiatek A, De Sutter V, Rischer H, Vanhoutte I, Van Onckelen H, Hilson P, Inze D, Oksman-Caldentey K, Gossens A (2007) Functional characterization of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry 68:2773–2785. doi:10.1016/j.phytochem.2007.09.010

    Article  PubMed  Google Scholar 

  26. Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102:14919–14924. doi:10.1073/pnas.0506581102

    Article  CAS  PubMed  Google Scholar 

  27. Øvstebø R, Haug KBF, Lande K, Kierulf P (2003) PCR-based calibration curves for studies of quantitative gene expression in human monocytes: development and evaluation. Clin Chem 49:425–432. doi:10.1373/49.3.425

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David R. Moore at Targacept, USA for providing sample of anatabine, Peter Waterhouse at Plant Industry, CSIRO, Australia for providing the plasmid pHANNIBAL, and Jingjing Liang, Ying Shen and Wei Mao for technical helps. We appreciate the anonymous reviewers’ suggestions and Audrey Seedman’s revision. This work was funded by National Basic Research Program of China (973 Program, 2007CB108805), China Transgenic Research Program (2008ZX08002-001) and Shanghai Science and Technology Committee (08391911800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofen Sun or Kexuan Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Zeng, J., Liang, Z. et al. Silencing of PMT expression caused a surge of anatabine accumulation in tobacco. Mol Biol Rep 36, 2285–2289 (2009). https://doi.org/10.1007/s11033-009-9446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9446-1

Keywords

Navigation