Advertisement

Molecular Breeding

, 39:162 | Cite as

Molecular control and genetic improvement of phosphorus use efficiency in rice

  • Qiuju He
  • Fei Wang
  • Yan Wang
  • Hong Lu
  • Zhili Yang
  • Qundan Lv
  • Chuanzao MaoEmail author
Article
  • 108 Downloads
Part of the following topical collections:
  1. Topical Collection on Rice Functional Genomics

Abstract

Phosphorus (P) is an essential nutrient for plant growth and development. Phosphate (Pi) fertilizer supply is an effective way to improve crop yield. However, generally, less than 25% of the applied Pi is taken up by crops. Therefore, it is urgent to improve crop P use efficiency. The overall P use efficiency includes processes of P acquisition from soil, translocation from root to shoot, allocation, utilization, and remobilization within plant; each process can be developmentally and environmentally regulated. In this review, we summarize recent studies on molecular mechanisms and regulatory pathways involved in rice root Pi acquisition, Pi transportation from root to shoot, and allocation and remobilization of Pi within plant tissues. The possible strategies for improving crop P use efficiency are also discussed.

Keywords

Phosphorus use efficiency Root Phosphate transporters Remobilization Genetic improvement 

Notes

Funding information

This work was supported by the National Key Research and Development Program of China (2016YFD0100700), the Ministry of Agriculture of China (2016ZX08001003-009), the National Natural Science Foundation of China (31601813), and the Fundamental Research Funds for the Central Universities (2018FZA6002).

Compliance with ethical standards

Disclaimer

We apologize for not being able to cite all related publications because of space limitations.

References

  1. Abel S (2017) Phosphate scouting by root tips. Curr Opin Plant Biol.  https://doi.org/10.1016/j.pbi.2017.04.016 CrossRefGoogle Scholar
  2. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J Ecol 84: 597–608CrossRefGoogle Scholar
  3. Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57(5):798–809.  https://doi.org/10.1111/j.1365-313X.2008.03726.x CrossRefPubMedGoogle Scholar
  4. Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 8(7):e68161CrossRefGoogle Scholar
  5. Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y (2012) Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J 71(3):479–491.  https://doi.org/10.1111/j.1365-313X.2012.05004.x CrossRefPubMedGoogle Scholar
  6. Ayadi A, David P, Arrighi JF, Chiarenza S, Thibaud MC, Nussaume L, Marin E (2015) Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. Plant Physiol 167(4):1511–1526.  https://doi.org/10.1104/pp.114.252338 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bieleski R, Ferguson I (1983) Physiology and metabolism of phosphate and its compounds. In: Inorganic plant nutrition. Springer, pp 422–449Google Scholar
  8. Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma LQ (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51(21):12131–12138.  https://doi.org/10.1021/acs.est.7b03028 CrossRefPubMedGoogle Scholar
  9. Chang MX, Gu M, Xia YW, Dai XL, Dai CR, Zhang J, Wang SC, Qu HY, Yamaji N, Feng Ma J, Xu GH (2019) OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. Plant Physiol 179(2):656–670.  https://doi.org/10.1104/pp.18.01097 CrossRefPubMedGoogle Scholar
  10. Chen J, Liu Y, Ni J, Wang Y, Bai Y, Shi J, Gan J, Wu Z, Wu P (2011) OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol 157(1):269–278.  https://doi.org/10.1104/pp.111.181669 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen J, Wang Y, Wang F, Yang J, Gao M, Li C, Liu Y, Liu Y, Yamaji N, Ma JF, Paz-Ares J, Nussaume L, Zhang S, Yi K, Wu Z, Wu P (2015) The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels. Plant Cell 27(3):711–723.  https://doi.org/10.1105/tpc.114.135335 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Ecology. Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015.  https://doi.org/10.1126/science.1167755 CrossRefPubMedGoogle Scholar
  13. Dai X, Wang Y, Yang A, Zhang WH (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159(1):169–183.  https://doi.org/10.1104/pp.112.194217 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dai X, Wang Y, Zhang WH (2016) OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67(3):947–960.  https://doi.org/10.1093/jxb/erv515 CrossRefPubMedGoogle Scholar
  15. Dionisio G, Madsen CK, Holm PB, Welinder KG, Jorgensen M, Stoger E, Arcalis E, Brinch-Pedersen H (2011) Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol 156(3):1087–1100.  https://doi.org/10.1104/pp.110.164756 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang T, Wittwer C, Jessen HJ, Zhang H, An G, Chao D, Liu D, Lei M (2019) Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Mol Plant.  https://doi.org/10.1016/j.molp.2019.08.002 CrossRefGoogle Scholar
  17. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535–539CrossRefGoogle Scholar
  18. Gao W, Lu L, Qiu W, Wang C, Shou H (2017) OsPAP26 encodes a major purple acid phosphatase and regulates phosphate remobilization in rice. Plant Cell Physiol 58(5):885–892.  https://doi.org/10.1093/pcp/pcx041 CrossRefPubMedGoogle Scholar
  19. Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus-albus l .3. the probable mechanism by which phosphorus movement in the soil root interface is enhanced. Plant Soil 70(1):107–124.  https://doi.org/10.1007/Bf02374754 CrossRefGoogle Scholar
  20. Gaxiola RA, Edwards M, Elser JJ (2011) A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere 84(6):840–845.  https://doi.org/10.1016/j.chemosphere.2011.01.062 CrossRefPubMedGoogle Scholar
  21. Giri J, Bhosale R, Huang G, Pandey BK, Parker H, Zappala S, Yang J, Dievart A, Bureau C, Ljung K, Price A, Rose T, Larrieu A, Mairhofer S, Sturrock CJ, White P, Dupuy L, Hawkesford M, Perin C, Liang W, Peret B, Hodgman CT, Lynch J, Wissuwa M, Zhang D, Pridmore T, Mooney SJ, Guiderdoni E, Swarup R, Bennett MJ (2018) Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat Commun 9(1):1408.  https://doi.org/10.1038/s41467-018-03850-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gu M, Chen A, Sun S, Xu G (2015) Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? Mol Plant 9(3):396–416CrossRefGoogle Scholar
  23. Gu M, Zhang J, Li H, Meng D, Li R, Dai X, Wang S, Liu W, Qu H, Xu G (2017) Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. J Exp Bot.  https://doi.org/10.1093/jxb/erx174 CrossRefGoogle Scholar
  24. Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X (2015) Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiol 168(4):1762–1776.  https://doi.org/10.1104/pp.15.00736 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, Lopez-Arredondo D, Wissuwa M, Delhaize E, Rouached H (2016) Improving phosphorus use efficiency-a complex trait with emerging opportunities. Plant J.  https://doi.org/10.1111/tpj.13423 CrossRefGoogle Scholar
  26. Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C (2011) LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol 156(3):1101–1115CrossRefGoogle Scholar
  27. Hu H, Wang W, Zhu Z, Zhu J, Tan D, Zhou Z, Mao C, Chen X (2016) GIPS: a software guide to sequencing-based direct gene cloning in forward genetics studies. Plant Physiol.  https://doi.org/10.1104/pp.15.01327 CrossRefGoogle Scholar
  28. Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Gao X, Liu L, Qian Y, Huang X, Yu F, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C (2019) Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants.  https://doi.org/10.1038/s41477-019-0384-1 CrossRefGoogle Scholar
  29. Huang G, Liang W, Sturrock CJ, Pandey BK, Giri J, Mairhofer S, Wang D, Muller L, Tan H, York LM, Yang J, Song Y, Kim YJ, Qiao Y, Xu J, Kepinski S, Bennett MJ, Zhang D (2018) Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nat Commun 9(1):2346.  https://doi.org/10.1038/s41467-018-04710-x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156(3):1164–1175.  https://doi.org/10.1104/pp.111.175240 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jia H, Zhang S, Wang L, Yang Y, Zhang H, Cui H, Shao H, Xu G (2017) OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice. J Exp Bot 68(18):5057–5068.  https://doi.org/10.1093/jxb/erx317 CrossRefPubMedGoogle Scholar
  32. Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Chapter five-phosphorus: its efficient use in agriculture. In: Sparks DL (ed) Advances in Agronomy, vol 123. Academic Press, pp 177–228.  https://doi.org/10.1016/B978-0-12-420225-2.00005-4 Google Scholar
  33. Kanno S, Arrighi JF, Chiarenza S, Bayle V, Berthome R, Peret B, Javot H, Delannoy E, Marin E, Nakanishi TM, Thibaud MC, Nussaume L (2016a) A novel role for the root cap in phosphate uptake and homeostasis. Elife 5:e14577.  https://doi.org/10.7554/eLife.14577 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kanno S, Cuyas L, Javot H, Bligny R, Gout E, Dartevelle T, Hanchi M, Nakanishi TM, Thibaud MC, Nussaume L (2016b) Performance and limitations of phosphate quantification: guidelines for plant biologists. Plant Cell Physiol 57(4):690–706.  https://doi.org/10.1093/pcp/pcv208 CrossRefPubMedGoogle Scholar
  35. Li Y, Zhang J, Zhang X, Fan H, Gu M, Qu H, Xu G (2015) Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds. Plant Sci 230:23–32.  https://doi.org/10.1016/j.plantsci.2014.10.001 CrossRefPubMedGoogle Scholar
  36. Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Perin C, Ko SS, Guiderdoni E, Chiou TJ, Echeverria M (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51(12):2119–2131.  https://doi.org/10.1093/pcp/pcq170 CrossRefGoogle Scholar
  37. Liu F, Wang Z, Ren H, Shen C, Li Y, Ling H-Q, Wu C, Lian X, Wu P (2010) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62(3):508–517.  https://doi.org/10.1111/j.1365-313X.2010.04170.x CrossRefPubMedGoogle Scholar
  38. Liu TY, Huang TK, Tseng CY, Lai YS, Lin SI, Lin WY, Chen JW, Chiou TJ (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24(5):2168–2183CrossRefGoogle Scholar
  39. Liu J, Yang L, Luan M, Wang Y, Zhang C, Zhang B, Shi J, Zhao FG, Lan W, Luan S (2015) A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 112(47):E6571–E6578.  https://doi.org/10.1073/pnas.1514598112 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu TY, Huang TK, Yang SY, Hong YT, Huang SM, Wang FN, Chiang SF, Tsai SY, Lu WC, Chiou TJ (2016) Identification of plant vacuolar transporters mediating phosphate storage. Nat Commun 7:11095.  https://doi.org/10.1038/ncomms11095 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lu L, Qiu W, Gao W, Tyerman SD, Shou H, Wang C (2016) OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant Cell Environ 39(10):2247–2259.  https://doi.org/10.1111/pce.12794 CrossRefPubMedGoogle Scholar
  42. Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J, Wu Z, Liu Y, Mao C, Yi K, Wu P (2014) SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell 26(4):1586–1597.  https://doi.org/10.1105/tpc.114.123208 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Medici A, Szponarski W, Dangeville P, Safi A, Dissanayake IM, Saenchai C, Emanuel A, Rubio V, Lacombe B, Ruffel S, Tanurdzic M, Rouached H, Krouk G (2019) Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell.  https://doi.org/10.1105/tpc.18.00656 CrossRefGoogle Scholar
  44. Mehra P, Pandey BK, Giri J (2017) Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnol J 15(8):1054–1067.  https://doi.org/10.1111/pbi.12699 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pandey BK, Mehra P, Verma L, Bhadouria J, Giri J (2017) OsHAD1, a haloacid dehalogenase-like APase, enhances phosphate accumulation. Plant Physiol 174(4):2316–2332.  https://doi.org/10.1104/pp.17.00571 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99(20):13324–13329.  https://doi.org/10.1073/pnas.202474599 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97(3):1087–1093CrossRefGoogle Scholar
  48. Raboy V, Young KA, Dorsch JA, Cook A (2001) Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol 158(4):489–497.  https://doi.org/10.1078/0176-1617-00361 CrossRefGoogle Scholar
  49. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693.  https://doi.org/10.1146/annurev.arplant.50.1.665 CrossRefPubMedGoogle Scholar
  50. Rose TJ, Pariasca-Tanaka J, Rose MT, Fukuta Y, Wissuwa M (2010) Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crop Res 119(1):154–160CrossRefGoogle Scholar
  51. Rouached H, Stefanovic A, Secco D, Bulak Arpat A, Gout E, Bligny R, Poirier Y (2011) Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant J 65 (4):557–570.  https://doi.org/10.1111/j.1365-313X.2010.04442.x CrossRefGoogle Scholar
  52. Ruan W, Guo M, Wu P, Yi K (2017) Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. Plant Mol Biol 93(3):327–340.  https://doi.org/10.1007/s11103-016-0564-6 CrossRefGoogle Scholar
  53. Ruan W, Guo M, Xu L, Wang X, Zhao H, Wang J, Yi K (2018) An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. Plant Cell 30(4):853–870.  https://doi.org/10.1105/tpc.17.00738 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Secco D, Baumann A, Poirier Y (2010) Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiol 152(3):1693–1704.  https://doi.org/10.1104/pp.109.149872 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shen C, Wang S, Zhang S, Xu Y, Qian Q, Qi Y, de Jiang A (2013) OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant Cell Environ 36(3):607–620.  https://doi.org/10.1111/pce.12001 CrossRefPubMedGoogle Scholar
  56. Shi J, Hu H, Zhang K, Zhang W, Yu Y, Wu Z, Wu P (2014) The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice. J Exp Bot 65(3):859–870.  https://doi.org/10.1093/jxb/ert424 CrossRefGoogle Scholar
  57. Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G (2012) A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159(4):1571–1581.  https://doi.org/10.1104/pp.112.196345 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39(6):792–796.  https://doi.org/10.1038/ng2041 CrossRefPubMedGoogle Scholar
  59. Tian J, Wang C, Zhang Q, He X, Whelan J, Shou H (2012) Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. J Integr Plant Biol 54(9):631–639.  https://doi.org/10.1111/j.1744-7909.2012.01143.x CrossRefPubMedGoogle Scholar
  60. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157(3):423–447.  https://doi.org/10.1046/j.1469-8137.2003.00695.x CrossRefGoogle Scholar
  61. Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195(2):306–320.  https://doi.org/10.1111/j.1469-8137.2012.04190.x CrossRefPubMedGoogle Scholar
  62. Wang C, Huang W, Ying Y, Li S, Secco D, Tyerman S, Whelan J, Shou H (2012) Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol 196(1):139–148.  https://doi.org/10.1111/j.1469-8137.2012.04227.x CrossRefPubMedGoogle Scholar
  63. Wang S, Zhang S, Sun C, Xu Y, Chen Y, Yu C, Qian Q, Jiang DA, Qi Y (2014a) Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytol 201(1):91–103.  https://doi.org/10.1111/nph.12499 CrossRefPubMedGoogle Scholar
  64. Wang X, Wang Y, Pineros MA, Wang Z, Wang W, Li C, Wu Z, Kochian LV, Wu P (2014b) Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell Environ 37(5):1159–1170.  https://doi.org/10.1111/pce.12224 CrossRefPubMedGoogle Scholar
  65. Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y, Shou H, Mo X, Mao C, Wu P (2014c) Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci U S A 111(41):14953–14958.  https://doi.org/10.1073/pnas.1404680111 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wang C, Ying S, Huang HJ, Li K, Wu P, Shou HX (2009) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57 (5):895–904.  https://doi.org/10.1111/j.1365-313X.2008.03734.x CrossRefGoogle Scholar
  67. Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H (2015) Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169(4):2822–2831.  https://doi.org/10.1104/pp.15.01005 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang F, Deng M, Xu J, Zhu X, Mao C (2018) Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol 74:114–122.  https://doi.org/10.1016/j.semcdb.2017.06.013 CrossRefPubMedGoogle Scholar
  69. Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M (2003) Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol 158(2):239–248.  https://doi.org/10.1046/j.1469-8137.2003.00748.x CrossRefGoogle Scholar
  70. Wege S, Khan GA, Jung JY, Vogiatzaki E, Pradervand S, Aller I, Meyer AJ, Poirier Y (2016) The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal. Plant Physiol 170(1):385–400.  https://doi.org/10.1104/pp.15.00975 CrossRefPubMedGoogle Scholar
  71. Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352(6288):986–990.  https://doi.org/10.1126/science.aad9858 CrossRefPubMedGoogle Scholar
  72. Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105(6–7):890–897CrossRefGoogle Scholar
  73. Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16(2):205–212.  https://doi.org/10.1016/j.pbi.2013.03.002 CrossRefPubMedGoogle Scholar
  74. Xu L, Zhao H, Wan R, Liu Y, Xu Z, Tian W, Ruan W, Wang F, Deng M, Wang J, Dolan L, Luan S, Xue S, Yi K (2019) Identification of vacuolar phosphate efflux transporters in land plants. Nat Plants 5(1):84–94.  https://doi.org/10.1038/s41477-018-0334-3 CrossRefPubMedGoogle Scholar
  75. Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida KT, Ma JF (2017) Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541(7635):92–95.  https://doi.org/10.1038/nature20610 CrossRefPubMedGoogle Scholar
  76. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J 5(6):735–745CrossRefGoogle Scholar
  77. Yang SY, Gronlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24(10):4236–4251.  https://doi.org/10.1105/tpc.112.104901 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yang WT, Baek D, Yun DJ, Hwang WH, Park DS, Nam MH, Chung ES, Chung YS, Yi YB, Kim DH (2014) Overexpression of OsMYB4P, an R2R3-type MYB transcriptional activator, increases phosphate acquisition in rice. Plant Physiol Biochem 80:259–267.  https://doi.org/10.1016/j.plaphy.2014.02.024 CrossRefPubMedGoogle Scholar
  79. Yang WT, Baek D, Yun DJ, Lee KS, Hong SY, Bae KD, Chung YS, Kwon YS, Kim DH, Jung KH, Kim DH (2018) Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter. PLoS One 13(3):e0194628.  https://doi.org/10.1371/journal.pone.0194628 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ye Y, Yuan J, Chang X, Yang M, Zhang L, Lu K, Lian X (2015) The phosphate transporter gene OsPht1;4 is involved in phosphate homeostasis in rice. PLoS One 10(5):e0126186.  https://doi.org/10.1371/journal.pone.0126186 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138(4):2087–2096.  https://doi.org/10.1104/pp.105.063115 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ying Y, Yue W, Wang S, Li S, Wang M, Zhao Y, Wang C, Mao C, Whelan J, Shou H (2017) Two h-type thioredoxins interact with the E2 ubiquitin conjugase PHO2 to fine-tune phosphate homeostasis in rice. Plant Physiol 173(1):812–824.  https://doi.org/10.1104/pp.16.01639 CrossRefPubMedGoogle Scholar
  83. Yue W, Ying Y, Wang C, Zhao Y, Dong C, Whelan J, Shou H (2017) OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters. Plant J 90(6):1040–1051.  https://doi.org/10.1111/tpj.13516 CrossRefPubMedGoogle Scholar
  84. Zhang Z, Liao H, Lucas WJ (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56(3):192–220.  https://doi.org/10.1111/jipb.12163 CrossRefPubMedGoogle Scholar
  85. Zhang F, Sun Y, Pei W, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S (2015) Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Plant J 82(4):556–569.  https://doi.org/10.1111/tpj.12804 CrossRefPubMedGoogle Scholar
  86. Zhao H, Frank T, Tan Y, Zhou C, Jabnoune M, Arpat AB, Cui H, Huang J, He Z, Poirier Y, Engel KH, Shu Q (2016) Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytol 211(3):926–939.  https://doi.org/10.1111/nph.13969 CrossRefPubMedGoogle Scholar
  87. Zhong Y, Wang Y, Guo J, Zhu X, Shi J, He Q, Liu Y, Wu Y, Zhang L, Lv Q, Mao C (2018) Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytol 219:135–148.  https://doi.org/10.1111/nph.15155 CrossRefPubMedGoogle Scholar
  88. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146(4):1673–1686CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Plant Physiology and Biochemistry, College of Life ScienceZhejiang UniversityHangzhouChina
  2. 2.Chemical Biology CenterLishui Institute of Agricultural ScienceLishuiChina

Personalised recommendations