Advertisement

Molecular Breeding

, 39:129 | Cite as

Identification and fine mapping of qGN1c, a QTL for grain number per panicle, in rice (Oryza sativa)

  • Zuopeng Xu
  • Yixu Miao
  • Zhiai Chen
  • Hailin Gao
  • Ruixuan Wang
  • Dongsheng Zhao
  • Baochai Zhang
  • Yihua Zhou
  • Shuzhu Tang
  • Honggen ZhangEmail author
  • Qiaoquan LiuEmail author
Article
  • 180 Downloads

Abstract

Grain number per panicle (GN) is one of the most important determinants of grain yield potential in rice. However, the underlying genetic and molecular mechanisms that regulate GN remain largely unknown. In this study, quantitative trait loci (QTLs) for grain yield–related traits were detected using a set of chromosomal segment substitution lines (CSSLs) that were generated from a cross between the indica cultivar 9311 as the trait donor, and the japonica cultivar ‘Nipponbare’ as the recipient. In total, 25 QTLs for panicle-related traits, including GN, panicle length, primary branch number, and secondary branch number, were identified on eight chromosomes. Among the QTLs, qGN1c for GN was found to be located near Gn1a, a previously reported major QTL for GN on chromosome 1. Fine mapping placed qGN1c within a region of ~ 379 kb in a chromosomal interval flanking Gn1a, indicating that qGN1c is an uncloned gene. Evaluation of agronomic traits in a near isogenic line (NIL-qGN1c9311) suggested that qGN1c does not have additional impacts on agronomic traits except GN and thousand grain weight. More importantly, the grain yields per plant for the NIL-qGN1c9311 were significantly increased by 13.34% and 14.46% in two planting locations. Therefore, we conclude that the identification of qGN1c provides a useful genetic tool for the improvement of grain yield in rice breeding, and our findings will be helpful in cloning qGN1c.

Keywords

Rice Grain yield Grain number per panicle qGN1c QTL mapping 

Notes

Author contributions

Q.L., S.T., and Y.Z. conceived the study; Z.X., M.Y., Z.C., H.G., R.W., D.Z., and H.Z. performed the experiments and analyzed the data; Q.L., H.Z., and B.Z. reviewed and edited the article; and Z.X. wrote the article.

Funding information

This study was supported by the National Natural Science Foundation of China (Grant Nos. 31771743 and 31701393), the Postdoctoral Science Foundation of China (Grant No. 2018M632395), and the Government of Jiangsu Province (BE2018357 and PAPD).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

11032_2019_1039_MOESM1_ESM.docx (782 kb)
Supplementary Figure 1 (DOCX 782 kb)
11032_2019_1039_MOESM2_ESM.docx (497 kb)
Supplementary Figure 2 (DOCX 496 kb)
11032_2019_1039_MOESM3_ESM.docx (152 kb)
Supplementary Figure 3 (DOCX 151 kb)
11032_2019_1039_MOESM4_ESM.docx (17 kb)
Supplementary Table 1 (DOCX 17 kb)

References

  1. Ali ML, Sanchez PL, Yu SB, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234CrossRefGoogle Scholar
  2. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chen H, Tang YY, Liu JF, Tan LB, Jiang JH, Wang MM, Zhu ZF, Sun XY, Sun CQ (2017) Emergence of a novel chimeric gene underlying grain number in rice. Genetics 205:993–1002PubMedCrossRefGoogle Scholar
  4. Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N (2010) Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomic 10:339–347CrossRefGoogle Scholar
  5. Gao H, Jin MN, Zheng XM, Chen J, Yuan DY, Xin YY, Wang MQ, Huang DY, Zhang Z, Zhou KN, Sheng PK, Ma J, Ma WW, Deng HF, Jiang L, Liu SJ, Wang HY, Wu CY, Yuan LP, Wan JM (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci U S A 111:16337–16342PubMedPubMedCentralCrossRefGoogle Scholar
  6. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818PubMedCrossRefGoogle Scholar
  7. He GM, Luo XJ, Tian F, Li KG, Zhu ZF, Su W, Qian XY, Fu YC, Wang XK, Sun CQ, Yang JS (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16:618–626PubMedPubMedCentralCrossRefGoogle Scholar
  8. Huang RY, Jiang LR, Zheng JS, Wang TS, Wang HC, Huang YM, Hong ZL (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226PubMedCrossRefGoogle Scholar
  9. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497PubMedCrossRefGoogle Scholar
  10. Huo X, Wu S, Zhu ZF, Liu FX, Fu YC, Cai HW, Sun XY, Gu P, Xie DX, Tan LB, Sun CQ (2017) NOG1 increases grain production in rice. Nat Commun 8:1497PubMedPubMedCentralCrossRefGoogle Scholar
  11. Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380PubMedCrossRefGoogle Scholar
  12. Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–536PubMedCrossRefGoogle Scholar
  13. Kaur A, Sidana K, Bhatia D, Neelam K, Singh G, Sahi GK, Gill BK, Sharma P, Yadav IS, Singh K (2018) A novel QTL qSPP2.2 controlling spikelet per panicle identified from Oryza longistaminata (A. Chev. et Roehr.), mapped and transferred to Oryza sativa (L.). Mol Breed 38:92–104CrossRefGoogle Scholar
  14. Liu E, Liu Y, Wu GC, Zeng SY, Thi TGT, Liang LJ, Liang YF, Dong ZY, She D, Wang H, Zaid IU, Hong DL (2016a) Identification of a candidate gene for panicle length in rice (Oryza sativa L.) via association and linkage analysis. Front. Plant Sci 7:596Google Scholar
  15. Liu TM, Liu HY, Zhang H, Xing YZ (2013) Validation and characterization of Ghd7.1, a major quantitative trait locus with pleiotropic effects on spikelets per panicle, plant height, and heading date in rice (Oryza sativa L.). J Integr Plant Biol 55:917–927PubMedGoogle Scholar
  16. Liu TM, Mao DH, Zhang SP, Xu CG, Xing YZ (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet 118:1509–1517PubMedCrossRefGoogle Scholar
  17. Liu X, Zhao ZG, Liu LL, Xiao YH, Tian YL, Liu SJ, Chen LM, Wang YH, Liu YQ, Chen SH, Zhang WW, Wang CM, Jiang L, Wan JM (2016b) Construction of chromosomal segment substitution lines and genetic dissection of introgressed segments associated with yield determination in the parents of a super-hybrid rice. Plant Breed 135:63–72CrossRefGoogle Scholar
  18. Lu ZF, Yu H, Xiong GS, Wang J, Jiao YQ, Liu GF, Jing YH, Meng XB, Hu XM, Qian Q, Fu XD, Wang YH, Li JY (2013) Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell 25:3743–3759PubMedPubMedCentralCrossRefGoogle Scholar
  19. Luo X, Tian F, Fu Y, Yang J, Sun C (2009) Mapping quantitative trait loci influencing panicle-related traits from Chinese common wild rice (Oryza rufipogon) using introgression lines. Plant Breed 128:559–567CrossRefGoogle Scholar
  20. McCouch SR, CGSNL (2008) Gene nomenclature system for rice. Rice 1(1):72–84CrossRefGoogle Scholar
  21. Mei HW, Xu JL, Li ZK, Yu XQ, Guo LB, Wang YP, Ying CS, Luo LJ (2006) QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet 112:648–656PubMedCrossRefGoogle Scholar
  22. Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283CrossRefGoogle Scholar
  23. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedPubMedCentralCrossRefGoogle Scholar
  24. Qi L, Ding YB, Zheng XM, Xu R, Zhang LZ, Wang YY, Wang XN, Zhang LF, Cheng YL, Qiao WH, Yang QW (2018) Fine mapping and identification of a novel locus qGL12.2 control grain length in wild rice (Oryza rufipogon Griff.). Theor Appl Genet 131:1497–1508PubMedCrossRefGoogle Scholar
  25. Sasaki K, Fujita D, Koide Y, Lumanglas PD, Gannaban RB, Tagle AG, Obara M, Fukuta Y, Kobayashi N, Ishimaru T (2017) Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant type rice and evaluation of a near-isogenic line for grain productivity. J Exp Bot 68:2693–2702PubMedPubMedCentralCrossRefGoogle Scholar
  26. Sun ZZ, Yin XL, Ding J, Yu D, Hu M, Sun XW, Tan YN, Sheng XB, Liu L, Mo Y, Ouyang N, Jiang BB, Yuan GL, Duan MJ, Yuan DY, Fang J (2017) QTL analysis and dissection of panicle components in rice using advanced backcross populations derived from Oryza Sativa cultivars HR1128 and ‘Nipponbare’. PLoS One 12:e0175692PubMedPubMedCentralCrossRefGoogle Scholar
  27. Tang XX, Gong R, Sun WQ, Zhang CP, Yu SB (2018) Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.). Theor Appl Genet 131:801–815PubMedCrossRefGoogle Scholar
  28. Tian F, Zhu ZF, Zhang BS, Tan LB, Fu YC, Wang XK, Sun CQ (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 113:619–629PubMedCrossRefGoogle Scholar
  29. Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Cruz MTS, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190PubMedCrossRefGoogle Scholar
  30. Wang SS, Chen RK, Chen KY, Liu CY, Kao SM, Chung CL (2017) Genetic mapping of the qSBN7 locus, a QTL controlling secondary branch number per panicle in rice. Breed Sci 67:340–347PubMedPubMedCentralCrossRefGoogle Scholar
  31. Wei XJ, Xu JF, Guo HN, Jiang L, Chen SH, Yu CY, Zhou ZL, Hu PS, Zhai HQ, Wan JM (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758PubMedPubMedCentralCrossRefGoogle Scholar
  32. Weng XY, Wang L, Wang J, Hu Y, Du H, Xu CG, Xing YZ, Li XH, Xiao JH, Zhang QF (2014) Grain number, plant height, and heading Date7 is a central regulator of growth, development, and stress response. Plant Physiol 164:735–747PubMedPubMedCentralCrossRefGoogle Scholar
  33. Wu SJ, Zhong H, Zhou Y, Zuo H, Zhou LH, Zhu JY, Ji CQ, Gu SL, Gu MH, Liang GH (2009) Identification of QTLs for the resistance to rice stripe virus in the indica rice variety Dular. Euphytica 165:557–565CrossRefGoogle Scholar
  34. Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX (2016) The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet 12:e1006386PubMedPubMedCentralCrossRefGoogle Scholar
  35. Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang QF (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257PubMedCrossRefGoogle Scholar
  36. Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang QF (2008) Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet 116:789–796PubMedCrossRefGoogle Scholar
  37. Xu ZP, Li SC, Zhang CQ, Zhang BC, Zhu KZ, Zhou YH, Liu QQ (2017) Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Sci Rep 7:12561PubMedPubMedCentralCrossRefGoogle Scholar
  38. Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767PubMedCrossRefGoogle Scholar
  39. Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330CrossRefPubMedGoogle Scholar
  40. Yan CJ, Yan S, Yang YC, Zeng XH, Fang YW, Zeng SY, Tian CY, Sun YW, Tang SZ, Gu MH (2009) Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica 169:215–226CrossRefGoogle Scholar
  41. Yu HP, Qiu ZN, Xu QK, Wang ZW, Zeng DL, Hu J, Zhang GH, Zhu L, Gao ZY, Chen G, Guo LB, Qian Q, Ren DY (2017) Fine mapping of LOW TILLER 1, a gene controlling tillering and panicle branching in rice. Plant Growth Regul 83:93–104CrossRefGoogle Scholar
  42. Zhang H, Zhao Q, Sun ZZ, Zhang CQ, Feng Q, Tang SZ, Liang GH, Gu MH, Han B, Liu QQ (2011) Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics 38:603–611PubMedCrossRefGoogle Scholar
  43. Zhou LJ, Chen LM, Jiang L, Zhang WW, Liu LL, Liu X, Zhao ZG, Liu SJ, Zhang LJ, Wang JK, Wan JM (2009) Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theor Appl Genet 118:581–590PubMedCrossRefGoogle Scholar
  44. Zhou Y, Tao Y, Yuan Y, Zhang Y, Miao J, Zhang R, Yi C, Gong Z, Yang Z, Liang G (2018) Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.). Theor Appl Genet 131:637–648PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zuopeng Xu
    • 1
    • 2
  • Yixu Miao
    • 1
    • 2
  • Zhiai Chen
    • 1
  • Hailin Gao
    • 1
  • Ruixuan Wang
    • 1
  • Dongsheng Zhao
    • 1
    • 2
  • Baochai Zhang
    • 3
  • Yihua Zhou
    • 3
  • Shuzhu Tang
    • 1
    • 2
  • Honggen Zhang
    • 1
    • 2
    Email author
  • Qiaoquan Liu
    • 1
    • 2
    Email author
  1. 1.Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education College of AgricultureYangzhou UniversityYangzhouChina
  2. 2.Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
  3. 3.State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations