Molecular Breeding

, 39:53 | Cite as

Genetic mapping of soybean aphid biotype 3 and 4 resistance in PI 606390A

  • J. M. LaMantiaEmail author
  • M. A. R. Mian
  • M. G. Redinbaugh


The soybean aphid (Aphis glycines Matsumura) is a pest of soybean (Glycine max (L.) Merr.) in many soybean-growing countries of the world, mainly in Asia and North America. While numerous aphid-resistance loci have been mapped, new and virulent aphid biotypes continue to be identified. PI 606390A confers resistance to all four characterized soybean aphid biotypes. The objectives of this study were to identify single nucleotide polymorphism (SNP) markers closely linked to the loci conferring resistance to soybean aphid biotypes 3 and 4. One hundred and eight F6:7 families from a cross between the susceptible experimental line HR09-018 and the resistant PI 606390A plus the two parental lines were screened with aphid biotypes 3 and 4 using greenhouse choice tests. Broad-sense heritability estimates ranged from 0.69 to 0.91. Correlation between biotype 3 and biotype 4 resistance was also moderate (45–55%). A total of 1847 SNP markers were mapped to 22 linkage groups, and loci for resistance to both aphid biotypes were mapped to a 14 cM region on chromosome 18 using composite interval mapping. The locus explained between 26 and 40% of the phenotypic variation suggests the presence of a major locus and additional unidentified minor quantitative trait loci (QTL). A new symbol qRag-G is proposed to designate this new locus that will be useful for the development of durable aphid-resistant soybean cultivars.


Glycine max Soybeans Soybean aphid resistance Aphis glycines Biotype 


Funding information

This research was partially funded through a grant from the Ohio Soybean Council

Supplementary material

11032_2019_956_MOESM1_ESM.xlsx (57 kb)
Data S1 (XLSX 57 kb)
11032_2019_956_MOESM2_ESM.pdf (165 kb)
Fig S1 (PDF 164 kb)


  1. Ajayi-Oyetunde OO, Diers BW, Lagos-Kutz DM, Hill CB, Hartman GL, Reuter-Carlson U, Bradley CA (2016) Differential reactions of soybean isolines with combinations of aphid resistance genes Rag1, Rag2, and Rag3 to four soybean aphid biotypes. J Econ Entomol 109:1431–1437Google Scholar
  2. Alt J, Ryan-Mahmutagic M (2013) Soybean aphid biotype 4 identified. Crop Sci 53:1491–1495CrossRefGoogle Scholar
  3. Bansal R, Mian MAR, Michel A (2013) Identification of novel sources of host plant resistance to known soybean aphid biotypes. J Econ Entomol 106(3):1479–1485CrossRefGoogle Scholar
  4. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890Google Scholar
  5. Cassone BJ, Wenger JA, Michel AP (2015) Whole genome sequence of the soybean aphid endosymbiont Buchnera aphidicola and genetic differentiation among biotype-specific strains. J Genomics 3:85–94CrossRefGoogle Scholar
  6. DiFonzo C, Hines R (2002) Soybean aphid in Michigan: Update from 2001 season, Michigan State University Extension Bulletin E–2746Google Scholar
  7. Enders LS, Miller NJ (2016) Stress-induced changes in abundance differ among obligate and facultative endosymbionts of the soybean aphid. Ecol Evol 6(3):818–829CrossRefGoogle Scholar
  8. Fox J (2005) The R Commander: a basic statisicals graphical user interface to R. J Stat Softw 14:1–42Google Scholar
  9. Goff KE, Ramonell KM (2007) The role and regulation of receptor-like kinases in plant defense. Gene Reg Sys Biol 1:167Google Scholar
  10. Hartman GL, Domier LL, Wax LM, Helm CG, Onstad DW, Shaw JT, Solter LF, Voegtlin DJ, D’Arcy CJ, Gray ME, Steffey KL, Isard SA, Orwick PL (2001) Occurrence and distribution of Aphis glycines on soybeans in Illinois in 2000 and its potential control. Online Plant Health Progress. Plant Health ProgressGoogle Scholar
  11. Hill JH, Alleman R, Hogg DB, Grau CR (2001) First report of transmission of soybean mosaic virus and alfalfa mosaic virus by Aphis glycines in the New World. Plant Dis 85:561CrossRefGoogle Scholar
  12. Hill CB, Li Y, Hartman GL (2004) Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae). J Econ Entomol 97:1071–1077CrossRefGoogle Scholar
  13. Hill CB, Li Y, Hartman GL (2006a) A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Sci 46:1601–1605CrossRefGoogle Scholar
  14. Hill CB, Li Y, Hartman GL (2006b) Soybean aphid resistance in soybean Jackson is controlled by a single dominant gene. Crop Sci 46:1606–1608CrossRefGoogle Scholar
  15. Hill CB, Shiao D, Fox CM, Hartman GL (2017) Characterization and genetics of multiple soybean aphid biotype resistance in five soybean plant introductions. Theor Appl Genet 130:1335–1348Google Scholar
  16. Hyten DL, Choi IY, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang EY, Matukumalli LK, Cregan PB (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for QTL mapping. Crop Sci 50:960–968CrossRefGoogle Scholar
  17. Iwaki M, Roechan M, Hibino H, Tochihara H, Tantera DM (1980) A persistent aphid borne virus of soybean, Indonesian soybean dwarf virus transmitted by Aphis glycines. Plant Dis 64:1027–1030CrossRefGoogle Scholar
  18. Jun TH, Mian MAR, Michel AP (2012) Genetic mapping revealed two loci for soybean aphid resistance in PI 567301B. Theor Appl Genet 124:13–22CrossRefGoogle Scholar
  19. Kim KS, Bellendir S, Hudson K, Hill C, Hartman G, Hyten D, Hudson M, Diers B (2010a) Fine mapping the soybean aphid resistance gene Rag1 in soybean. Theor Appl Genet 120:1063–1071CrossRefGoogle Scholar
  20. Kim KS, Hill CB, Hartman GL, Hyten DL, Hudson ME, Diers BW (2010b) Fine mapping of the soybean aphid-resistance gene Rag2 in soybean PI 200538. Theor Appl Genet 121:599–610CrossRefGoogle Scholar
  21. Lee S, Freewalt KR, McHale LK, Song Q, Jun T-H, Michel AP, Dorrance AE, Mian MAR (2015a) A high resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6k. Mol Breed 35:58. CrossRefGoogle Scholar
  22. Lee JS, Yoo MH, Jung JK, Bilyeu KD, Lee JD, Kang S (2015b) Detection of novel QTLs for foxglove aphid resistance in soybean. Theor Appl Genet 128:1481–1488CrossRefGoogle Scholar
  23. Lee S, Cassone B, Wijeratne A, Jun T, Michel A, Mian MAR (2017) Transcriptomic dynamics in soybean near-isogenic lines differing in alleles for an aphid resistance gene, following infestation by soybean aphid biotype 2. BMC Genomics 18:472Google Scholar
  24. Mccornack BP, Ragsdale DW, Venette RC (2004) Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures. J Econ Entomol 97:854–861CrossRefGoogle Scholar
  25. Mian MAR, Kang ST, Beil SE, Hammond RB (2008) Genetic linkage mapping of the soybean aphid resistance gene in PI 243540. Theor Appl Genet 117:955–962CrossRefGoogle Scholar
  26. Michel AP, Mittapalli O, Mian MAR (2011) Evolution of soybean aphid biotypes: understanding and managing virulence to host-plant resistance. In Soybean-Molecular Aspects of Breeding. Edited by Sudarić A. Intech; 355–372Google Scholar
  27. NASS (2018) National Agricultural Statistics Service. United StatesGoogle Scholar
  28. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266CrossRefGoogle Scholar
  29. Ostlie K (2002) Managing soybean aphid, University of Minnesota Extension Service, St Paul.
  30. Riedell W, Catangui M (2006) Greenhouse studies of soybean aphid (Hemiptera: Aphididae) effects on plant growth, seed yield and composition. J Agric Urban Entomol 23:225–235Google Scholar
  31. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefGoogle Scholar
  32. Song Q, Jenkins J, Jia G, Hyten D, Pantalone V, Jackson S, Schmutz J, Cregan P (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics 17:33CrossRefGoogle Scholar
  33. Van Ooijen JW (2006) JoinMap4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma BV, WageningenGoogle Scholar
  34. Wenger JA, Michel AP (2013) Implementing an evolutionary framework for understanding genetic relationships of phenotypically defined insect biotypes in the invasive soybean aphid (Aphis glycines). Evol Appl 6:1041–1053PubMedPubMedCentralGoogle Scholar
  35. Wiarda SL, Fehr WR, O’Neal ME (2012) Soybean aphid (Hemiptera: Aphididae) development on soybean with Rag1 alone, Rag2 alone, and both genes combined. J Econ Entomol 105(1):252–258CrossRefGoogle Scholar
  36. Wulff JA, White JA (2015) The endosymbiont Arsenophonus provides a general benefit to soybean aphid (Hemiptera: Aphididae) regardless of host plant resistance (Rag). Environ Entomol 31:1–8Google Scholar
  37. Zhang G, Gu C, Wang D (2009) Molecular mapping of soybean aphid resistance genes in PI 567541B. Theor Appl Genet 118:473–482CrossRefGoogle Scholar
  38. Zhang G, Gu C, Wang D (2010) A novel locus for soybean aphid resistance. Theor Appl Genet 120:1183–1191CrossRefGoogle Scholar
  39. Zhang S, Zhang Z, Wen Z, Gu C, An Y, Bales C, DiFonzo C, Song Q, Wang D (2017) Fine mapping of the aphid resistance genes Rag6 and Rag3c from Glycine soja 85-32. Theor Appl Genet 130(12):2601–2615CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • J. M. LaMantia
    • 1
    Email author
  • M. A. R. Mian
    • 2
  • M. G. Redinbaugh
    • 1
    • 3
  1. 1.USDA-ARS Corn Soybean and Wheat Quality Research Unit, OARDCWoosterUSA
  2. 2.USDA-ARS Soybean Nitrogen Fixation Unit and Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Plant PathologyOhio State University/OARDCWoosterUSA

Personalised recommendations