Molecular Breeding

, 39:46 | Cite as

Genome-wide association studies of molybdenum and selenium concentrations in C. arietinum and C. reticulatum seeds

  • Esin Ozkuru
  • Duygu Ates
  • Seda Nemli
  • Semih Erdogmus
  • Nur Karaca
  • Hasan Yilmaz
  • Bulent Yagmur
  • Canan Kartal
  • Muzaffer Tosun
  • Ozgul Ozdestan Ocak
  • Semih Otles
  • Abdullah Kahriman
  • Muhammed Bahattin TanyolacEmail author


Chickpea is the second most important and ancient pulse crop with its use in human diet for approximately 7500 years as one of the Neolithic founder crops. Previous studies on chickpea have predominantly focused on agronomic traits, with only limited research being dedicated to developing micronutrient-rich crops over the last half century. The objectives of this study were to identify genetic variation and population structure of Cicer reticulatum (C. reticulatum) and Cicer arietinum (C. arietinum) species and reveal marker-trait associations of seed molybdenum (Mo) and selenium (Se) concentrations in seeds by genome-wide association studies (GWAS). In this study, a population of 180 individuals including 107 wild (C. reticulatum) and 73 cultivated (C. arietinum) Cicer species was used in two different locations for 2 years, and 121,840 high-quality single nucleotide polymorphism (SNP) were identified across eight chromosomes through genotyping by sequencing (GBS) analysis. GWAS was performed for 180 individuals and alternatively two subpopulations separately, and 16 SNP markers were found significantly associated with seed Mo and Se concentrations, consistently among the four environments. The results demonstrated the high potential of GWAS mapping in revealing markers associated with Mo and Se micronutrients for wild (C. reticulatum) and cultivated (C. arietinum) species.


Cicer arietinum Cicer reticulatum Genetic diversity Genome-wide association study (GWAS) Molybdenum Selenium 



We would like to thank the Aegean Agricultural Research Institute for providing the seed materials. We are also grateful to Douglas R. Cook from the Department of Plant Pathology, University of California Davis for his support.

Funding information

This study was funded by The Scientific and Technological Research Council of Turkey (TUBITAK) with the project number of 214O278.

Supplementary material

11032_2019_947_Fig4_ESM.png (223 kb)
Fig S1

Histograms showing distribution of seed Mo concentrations for four environments: (a) Bornova 2015, (b) Bornova 2016, (c) Sanliurfa 2015, (d) Sanliurfa 2016 for Analysis (A) and Analysis (B), consisting of C. reticulatum and C. arietinum species, respectively (PNG 222 kb)

11032_2019_947_MOESM1_ESM.tif (20.4 mb)
High Resolution Image (TIF 20921 kb)
11032_2019_947_Fig5_ESM.png (150 kb)
Fig S2

Histograms showing distribution of seed Se concentrations for four environments: (a) Bornova 2015, (b) Bornova 2016, (c) Sanliurfa 2015, (d) Sanliurfa 2016 for Analysis (A) and Analysis (B), consisting of C. reticulatum and C. arietinum species, respectively (PNG 150 kb)

11032_2019_947_MOESM2_ESM.tif (14.8 mb)
High Resolution Image (TIF 15174 kb)
11032_2019_947_Fig6_ESM.png (317 kb)
Fig S3

Distribution of SNP markers over chromosomes. (PNG 317 kb)

11032_2019_947_MOESM3_ESM.tif (28.6 mb)
High Resolution Image (TIF 29327 kb)
11032_2019_947_Fig7_ESM.png (886 kb)
Fig S4

Dendrogram tree analysis according to Nei’s genetic distance. (PNG 885 kb)

11032_2019_947_MOESM4_ESM.tif (31.4 mb)
High Resolution Image (TIF 32153 kb)
11032_2019_947_Fig8_ESM.png (93 kb)
Fig S5

The relationship between 180 individuals illustrated by 3D scatter diagram of PCA analysis. (PNG 92 kb)

11032_2019_947_MOESM5_ESM.tif (4.6 mb)
High Resolution Image (TIF 4683 kb)
11032_2019_947_Fig9_ESM.png (178 kb)
Fig S6

Q-Q plots of (a) Mo and (b) Se concentration for 4 environmental data sets and combined analysis. (PNG 177 kb)

11032_2019_947_MOESM6_ESM.tif (8 mb)
High Resolution Image (TIF 8216 kb)
11032_2019_947_MOESM10_ESM.docx (14 kb)
Table S1 List of 107 C. reticulatum and 73 C. arietinum genotypes (DOCX 14 kb)
11032_2019_947_MOESM11_ESM.docx (25 kb)
Table S2 Summary of ANOVA for Mo and Se micronutrient concentrations in chickpea seeds. (DOCX 24 kb)
11032_2019_947_MOESM12_ESM.docx (15 kb)
Table S3 Individuals showing minimum or maximum average concentrations for Mo and Se micronutrients among all environments. (DOCX 15 kb)
11032_2019_947_MOESM13_ESM.docx (21 kb)
Table S4 Summary of marker distribution across 8 chromosomes and unanchored scaffold. (DOCX 21 kb)
11032_2019_947_MOESM14_ESM.docx (17 kb)
Table S5 List of thousand seed weight analysis of 180 individuals (DOCX 17 kb)
11032_2019_947_MOESM7_ESM.docx (28 kb)
Table S6 Number of identified SNPs among four environments and combined analysis for Analysis (A), Analysis (B) and Analysis (A+B) (with threshold of FDR < 0.05). (DOCX 27 kb)
11032_2019_947_MOESM8_ESM.docx (16 kb)
Table S7 List of P and significance values of co-localised SNPs among Analysis (A) and Analysis (A+B) (DOCX 16 kb)
11032_2019_947_MOESM9_ESM.docx (16 kb)
Table S8 Details of BLAST analysis for identification of putative candidate gene associations. (DOCX 16 kb)


  1. Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30(10):1081–1087CrossRefGoogle Scholar
  2. Ates D, Sever T, Aldemir S, Yagmur B, Temel HY, Kaya HB, Alsaleh A, Kahraman A, Ozkan H, Vandenberg A (2016) Identification QTLs controlling genes for Se uptake in lentil seeds. PLoS One 11(3):e0149210CrossRefGoogle Scholar
  3. Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2015) Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep 5:12468CrossRefGoogle Scholar
  4. Bajaj D, Upadhyaya HD, Das S, Kumar V, Gowda C, Sharma S, Tyagi AK, Parida SK (2016) Identification of candidate genes for dissecting complex branch number trait in chickpea. Plant Sci 245:61–70CrossRefGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  6. Blair MW, Wu X, Bhandari D, Astudillo C (2016) Genetic dissection of ICP-detected nutrient accumulation in the whole seed of common bean (Phaseolus vulgaris L.). Front Plant Sci 7:219Google Scholar
  7. Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58CrossRefGoogle Scholar
  8. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6(5):e1000940CrossRefGoogle Scholar
  9. de Valença A, Bake A, Brouwer I, Giller K (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14CrossRefGoogle Scholar
  10. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498CrossRefGoogle Scholar
  11. Diapari M, Sindhu A, Bett K, Deokar A, Warkentin TD, Tar’an B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57(8):459–468CrossRefGoogle Scholar
  12. Diapari M, Sindhu A, Warkentin TD, Bett K, Tar’an B (2015) Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol Breed 35(1):1–14CrossRefGoogle Scholar
  13. Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620CrossRefGoogle Scholar
  15. Faostat F (2016) Agriculture Organization of the United Nations Statistics Division (2014). Production available in: [Review date: April 2015]
  16. Gómez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19(2):165–180CrossRefGoogle Scholar
  17. Gonzali S, Kiferle C, Perata P (2017) Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Curr Opin Biotechnol 44:16–26CrossRefGoogle Scholar
  18. Gupta S, Nawaz K, Parween S, Roy R, Sahu K, Pole AK, Khandal H, Srivastava R, Parida SK, Chattopadhyay D (2016) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Research:dsw042Google Scholar
  19. Hirdyani H (2014) Nutritional composition of chickpea (Cicerarietinum-L) and value added products-a review. Indian J Comm Health 26(6):102–106Google Scholar
  20. Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10(6):716–732CrossRefGoogle Scholar
  21. Hong EP, Park JW (2012) Sample size and statistical power calculation in genetic association studies. Genomics Inform 10(2):117–122CrossRefGoogle Scholar
  22. Huang Y, Sun C, Min J, Chen Y, Tong C, Bao J (2015) Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J Agric Food Chem 63(50):10885–10892CrossRefGoogle Scholar
  23. Imran M, Rehim A, Hussain S, Zafar-ul-Hye M, Rehman HU (2016) Efficiency of zinc and phosphorus applied to open-pollinated and hybrid cultivars of maize. Int J Agric Biol 18(6):1249–1255CrossRefGoogle Scholar
  24. Kacar B (1972) Chemical analysis of plant and soil: II. plant analysis. Ankara University Press 453(155):646Google Scholar
  25. Kaya HB, Cetin O, Kaya HS, Sahin M, Sefer F, Tanyolac B (2016) Association mapping in Turkish olive cultivars revealed significant markers related to some important agronomic traits. Biochem Genet 54(4):506–533CrossRefGoogle Scholar
  26. Khazaei H, Podder R, Caron CT, Kundu SS, Diapari M, Vandenberg A, Bett KE (2017) Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome 10(2).
  27. Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S (2015a) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162CrossRefGoogle Scholar
  28. Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S (2015b) A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep 5:11166CrossRefGoogle Scholar
  29. Kujur A, Upadhyaya HD, Bajaj D, Gowda C, Sharma S, Tyagi AK, Parida SK (2016) Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea. Sci Rep 6:27968CrossRefGoogle Scholar
  30. Leamy LJ, Zhang H, Li C, Chen CY, Song B-H (2017) A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics 18(1):18CrossRefGoogle Scholar
  31. Li Y-h, Reif JC, Hong H-l, Li H-h, Liu Z-x, Ma Y-s, Li J, Tian Y, Li Y-f, Li W-b (2018) Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Plant Sci 266:95–101CrossRefGoogle Scholar
  32. Lu Q, Zhang M, Niu X, Wang S, Xu Q, Feng Y, Wang C, Deng H, Yuan X, Yu H (2015) Genetic variation and association mapping for 12 agronomic traits in indica rice. BMC Genomics 16(1):1CrossRefGoogle Scholar
  33. Ma B, Liao L, Peng Q, Fang T, Zhou H, Korban SS, Han Y (2017) Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. J Integr Plant Biol 59:190–204CrossRefGoogle Scholar
  34. Mamo BE, Barber BL, Steffenson BJ (2014) Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J Cereal Sci 60(3):497–506CrossRefGoogle Scholar
  35. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRefGoogle Scholar
  36. Muzhingi T, Palacios-Rojas N, Miranda A, Cabrera ML, Yeum KJ, Tang G (2017) Genetic variation of carotenoids, vitamin E and phenolic compounds in provitamin A biofortified maize. J Sci Food Agric 97(3):793–801CrossRefGoogle Scholar
  37. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21(8):2194–2202CrossRefGoogle Scholar
  38. Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292CrossRefGoogle Scholar
  39. Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SR, Tarpley L, Eizenga GC, McGrath SP, Zhao F-J (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 9(2):e89685CrossRefGoogle Scholar
  40. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  41. Ray H, Bett K, Tar’an B, Vandenberg A, Thavarajah D, Warkentin T (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54(4):1698–1708CrossRefGoogle Scholar
  42. Ray P, Datta SP, Rakshit R, Golui D (2016) Agronomic bio-fortification of food crops with zinc and Iron for ameliorating their deficiencies in humans: constraints and possibilities. Indian J Fertilisers 12:28–35Google Scholar
  43. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  44. Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, Duarte J, Rivière N, Eversole K, on behalf of The International Wheat Genome Sequencing C, on behalf The Breed Wheat C, Le Gouis J, Davassi A, Balfourier F, Le Paslier M-C, Berard A, Brunel D, Feuillet C, Poncet C, Sourdille P, Paux E (2018) High throughput SNP discovery and genotyping in hexaploid wheat. PLoS One 13(1):e0186329. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21(6):695–710CrossRefGoogle Scholar
  46. Sharma H, Pampapathy G, Lanka S, Ridsdill-Smith T (2005) Exploitation of wild Cicer reticulatum germplasm for resistance to Helicoverpa armigera. J Econ Entomol 98(6):2246–2253CrossRefGoogle Scholar
  47. Shimray PW, Bajaj D, Srivastava R, Daware A, Upadhyaya HD, Kumar R, Bharadwaj C, Tyagi AK, Parida SK (2017) Identifying transcription factor genes associated with yield traits in chickpea. Plant Mol Biol Report 35(5):562–574CrossRefGoogle Scholar
  48. Silva AD, Franzini VI, Piccolla CD, Muraoka T (2017) Molybdenum supply and biological fixation of nitrogen by two Brazilian common bean cultivars. Rev Bras Eng Agríc Ambient 21(2):100–105CrossRefGoogle Scholar
  49. Thavarajah P (2012) Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: biofortification opportunities to combat global micronutrient malnutrition. Food Res Int 49(1):99–104CrossRefGoogle Scholar
  50. Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao N (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9(5):e96758CrossRefGoogle Scholar
  51. Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda C, Sharma S, Tyagi AK, Parida SK (2016) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:24050CrossRefGoogle Scholar
  52. Upadhyaya HD, Thudi M, Dronavalli N, Gujaria N, Singh S, Sharma S, Varshney RK (2011) Genomic tools and germplasm diversity for chickpea improvement. Plant Genet Resour 9(1):45–58CrossRefGoogle Scholar
  53. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J (2013) From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10. 11–11.10. 33Google Scholar
  54. Varma Penmetsa R, Carrasquilla-Garcia N, Bergmann EM, Vance L, Castro B, Kassa MT, Sarma BK, Datta S, Farmer AD, Baek JM (2016) Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor. New Phytol 211:1440–1451CrossRefGoogle Scholar
  55. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240–246CrossRefGoogle Scholar
  56. von Wettberg EJ, Chang PL, Başdemir F, Carrasquila-Garcia N, Korbu LB, Moenga SM, Bedada G, Greenlon A, Moriuchi KS, Singh V (2018) Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat Commun 9(1):649CrossRefGoogle Scholar
  57. Wood JA, Grusak MA (2007) Nutritional value of chickpea. In: Yadav SSRR, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 101–142CrossRefGoogle Scholar
  58. Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2017a) Back into the wild—apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10(1):5–24CrossRefGoogle Scholar
  59. Zhang Y, Feng L, Fan X, Jiang J, Zheng X-b, Sun H, Chonghuai L (2017b) Genome-wide assessment of population structure, linkage disequilibrium and resistant QTLs in Chinese wild grapevine. Sci Hortic 215:59–64CrossRefGoogle Scholar
  60. Ziegler G, Kear P, Wu D, Ziyomo C, Lipka A, Gore M, Hoekenga O, Baxter I (2017) Elemental accumulation in kernels of the maize nested association mapping panel reveals signals of gene by environment interactions. bioRxiv:164962Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Esin Ozkuru
    • 1
  • Duygu Ates
    • 1
  • Seda Nemli
    • 1
  • Semih Erdogmus
    • 1
  • Nur Karaca
    • 1
  • Hasan Yilmaz
    • 1
  • Bulent Yagmur
    • 2
  • Canan Kartal
    • 3
  • Muzaffer Tosun
    • 4
  • Ozgul Ozdestan Ocak
    • 3
  • Semih Otles
    • 3
  • Abdullah Kahriman
    • 5
  • Muhammed Bahattin Tanyolac
    • 1
    Email author
  1. 1.Department of BioengineeringEge UniversityIzmirTurkey
  2. 2.Department of Soil ScienceEge UniversityIzmirTurkey
  3. 3.Department of Food EngineeringEge UniversityIzmirTurkey
  4. 4.Department of Filed CropsEge UniversityIzmirTurkey
  5. 5.Department of Field CropsHarran UniversityS. UrfaTurkey

Personalised recommendations