Molecular Breeding

, 39:21 | Cite as

Elucidating the genetic background of the early-flowering transgenic genetic stock T1190 with a high-density SNP array

  • Feixiong Luo
  • Eric van de Weg
  • Stijn Vanderzande
  • John L. Norelli
  • Henryk Flachowsky
  • Viola Hanke
  • Cameron PeaceEmail author
Short Communication


Apple trees have a long juvenile period, which makes apple genetic improvement via breeding costly and time-consuming. Transgenic genetic stocks carrying the early-flowering gene BpMADS4 have been used to reduce the juvenility of apple from five or more years to less than 10 months. One such genetic stock, T1190, has been used widely in breeding and research. It was reported to be a seedling of ‘Pinova’ but the other parent was unknown. Not knowing the alleles that this unknown parent contributed to T1190 brings uncertainties to breeding programs and research studies. In this study, the full pedigree of the genetic stock T1190 was reconstructed using an apple 20K SNP array and a panel of 530 reference cultivars and breeding selections. T1190 was determined to be an offspring of ‘Pinova’ and ‘Idared’. The full pedigree of T1190 was used to deduce the mosaic ancestor composition of the transgene-hosting chromosome. Such knowledge is useful to ensure breeding programs and research studies achieve their expected objectives.


BpMADS4 Malus × domestica Pedigree reconstruction Short juvenility Trueness-to-type 



The authors thank Roger Lewis of the USDA-ARS Appalachian Fruit Research Station for technical support. FL thanks the China Scholarship Council for providing funds for pursuing his PhD degree.

Funding information

This work was supported by the USDA National Institute of Food and Agriculture—Specialty Crop Research Initiative project no. 2014-51181-22378, “RosBREED: Combining disease resistance with horticultural quality in new rosaceous cultivars” ( SNP data on ‘Idared’ and ‘Pinova’ came from the FruitBreedomics project no. 265582, “Integrated approach for increasing breeding efficiency in fruit tree crops” (, which was co-funded by the EU Seventh Framework Programme.

Supplementary material

11032_2019_929_MOESM1_ESM.xlsx (469 kb)
ESM 1 (XLSX 469 kb)


  1. Allard A, Bink MCAM, Martinez S, Kelner J-J, Legave J-M, di Guardo M, Di Pierro EA, Laurens F, van de Weg EW, Costes E (2016) Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot 67:2875–2888CrossRefGoogle Scholar
  2. Ben Sadok I, Tiecher A, Galvez-Lopez D, Lahaye M, Lasserre-Zuber P, Bruneau M, Hanteville S, Robic R, Cournol R, Laurens F (2015) Apple fruit texture QTLs: year and cold storage effects on sensory and instrumental traits. Tree Genet Genomes 11:119CrossRefGoogle Scholar
  3. Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Guardo MD, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de WE, Troggio M (2014) Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh). PLoS One 9:e110377CrossRefGoogle Scholar
  4. Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel C-E, Kouassi AB, Laurens F, Mathis F, Gessler C, Gobbin D, Rezzonico F, Patocchi A, Kellerhals M, Boudichevskaia A, Dunemann F, Peil A, Nowicka A, Lata B, Stankiewicz-Kosyl M, Jeziorek K, Pitera E, Soska A, Tomala K, Evans KM, Fernández-Fernández F, Guerra W, Korbin M, Keller S, Lewandowski M, Plocharski W, Rutkowski K, Zurawicz E, Costa F, Sansavini S, Tartarini S, Komjanc M, Mott D, Antofie A, Lateur M, Rondia A, Gianfranceschi L, van de Weg WE (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090CrossRefGoogle Scholar
  5. Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106CrossRefGoogle Scholar
  6. Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-van Putten HJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Hortic Res 3:16057CrossRefGoogle Scholar
  7. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145CrossRefGoogle Scholar
  8. Flachowsky H, Le Roux P, Peil A, Patocchi A, Richter K, Hanke M (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377CrossRefGoogle Scholar
  9. Howard NP, van de Weg E, Bedford DS, Peace CP, Vanderzande S, Clark MD, Teh SL, Cai L, Luby JJ (2017) Elucidation of the ‘Honeycrisp’ pedigree through haplotype analysis with a multi-family integrated SNP linkage map and a large apple (Malus × domestica) pedigree-connected SNP data set. Hortic Res 4:17003CrossRefGoogle Scholar
  10. Kumar S, Bink MCAM, Volz RK, Bus VGM, Chagné D (2011) Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 8:1–14CrossRefGoogle Scholar
  11. Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251CrossRefGoogle Scholar
  12. Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J, Caprera A, Corelli-Grappadelli L, Costes E, Durel C-E, Mauroux J-B, Muranty H, Nazzicari N, Pascal T, Patocchi A, Peil A, Quilot-Turion B, Rossini L, Stella A, Troggio M, Velasco R, Weg E (2018) An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hortic Res 5:11CrossRefGoogle Scholar
  13. Le Roux P-M, Flachowsky H, Hanke M-V, Gessler C, Patocchi A (2012) Use of a transgenic early flowering approach in apple (Malus × domestica Borkh.) to introgress fire blight resistance from cultivar Evereste. Mol Breed 30:857–874CrossRefGoogle Scholar
  14. Muranty H, Troggio M, Sadok IB, Al Rifaï M, Auwerkerken A, Banchi E, Velasco R, Stevanato P, van De Weg WE, Di Guardo M (2015) Accuracy and responses of genomic selection on key traits in apple breeding. Hortic Res 2:15060CrossRefGoogle Scholar
  15. Ordidge M, Kirdwichai P, Baksh MF, Venison EP, Gibbings JG, Dunwell JM (2018) Genetic analysis of a major international collection of cultivated apple varieties reveals previously unknown historic heteroploid and inbred relationships. PLoS One 13:e0202405CrossRefGoogle Scholar
  16. Pikunova A, Madduri M, Sedov E, Noordijk Y, Peil A, Troggio M, Bus VG, Visser RG, van de Weg E (2014) ‘Schmidt’s Antonovka’ is identical to ‘Common Antonovka’, an apple cultivar widely used in Russia in breeding for biotic and abiotic stresses. Tree Genet Genomes 10:261–271CrossRefGoogle Scholar
  17. Schlathölter I, Jänsch M, Flachowsky H, Broggini GAL, Hanke M-V, Patocchi A (2018) Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta 247:1475–1488CrossRefGoogle Scholar
  18. USDA, ARS, National Genetic Resources Laboratory (2018) Germplasm Resources Information Network (GRIN). GRIN (Database) Accessed 17 Sep 2018
  19. van de Weg E, Guardo MD, Jänsch M, Socquet-Juglard D, Costa F, Baumgartner I, Broggini GAL, Kellerhals M, Troggio M, Laurens F, Durel C-E, Patocchi A (2018) Epistatic fire blight resistance QTL alleles in the apple cultivar ‘Enterprise’ and selection X-6398 discovered and characterized through pedigree-informed analysis. Mol Breed 38:5CrossRefGoogle Scholar
  20. van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022CrossRefGoogle Scholar
  21. Vanderzande S, Howard NP, Cai L, Linge CDS, Antanaviciute L, Bink MCAM, Kruisselbrink JW, Bassil N, Gasic K, Iezzoni A, van de Weg E, Peace C (2018) High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PloS One.
  22. Weigl K, Wenzel S, Flachowsky H, Peil A, Hanke M (2015) Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple. Plant Biotechnol J 13:246–258CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Feixiong Luo
    • 1
  • Eric van de Weg
    • 2
  • Stijn Vanderzande
    • 1
  • John L. Norelli
    • 3
  • Henryk Flachowsky
    • 4
  • Viola Hanke
    • 4
  • Cameron Peace
    • 1
    Email author
  1. 1.Department of HorticultureWashington State UniversityPullmanUSA
  2. 2.Department of Plant BreedingWageningen University and ResearchWageningenThe Netherlands
  3. 3.USDA-ARSKearneysvilleUSA
  4. 4.Julius Kühn-InstitutDresdenGermany

Personalised recommendations