Molecular Breeding

, 39:10 | Cite as

Synchronous improvement of subgenomes in allopolyploid: a case of Sclerotinia resistance improvement in Brassica napus

  • Yijuan Ding
  • Jiaqin Mei
  • Qinan Wu
  • Zhiyong Xiong
  • Yuehua Li
  • Chaoguo Shao
  • Lei Wang
  • Wei QianEmail author


The rare chance of homoelogous exchange results in a low efficiency to transfer elite locus between subgenomes of allopolyploid in vivo. Here, we propose a breeding strategy to synchronously improve the subgenomes of allopolyploid, as a case of Sclerotinia sclerotiorum resistance improvement in Brassica napus. The resistance of both parental species was firstly improved by identifying resistance source in B. oleracea and transferring the resistance loci from resistant B. oleracea into B. rapa. The resistance loci from B. rapa and B. oleracea were then pyramided by resynthesizing B. napus. Four groups of resynthesized B. napus, comprising of 37 lines with or without resistance loci from B. rapa and/or B. oleracea, were evaluated for Sclerotinia resistance across 3 years. Significant differences were found among the four groups for both leaf and stem resistance. The group of resynthesized B. napus carrying resistance loci from B. rapa and B. oleracea exhibited the highest level of resistance, out of which one prominent line showed 2.7-fold higher stem resistance than “Zhongshuang 9,” a partial resistant Chinese rapeseed variety. Our data highlights that the strategy of synchronous improvement of subgenomes can efficiently improve allopolyploids.


Allopolyploid Brassica napus Sclerotinia sclerotiorum Subgenome improvement 


Funding information

This study was financially supported by the 973 Program (2015CB150201), Key Projects in National Science and Technology (2014BAD01B07), National Nature Science Foundation of China (31671726, 31801395), the Science and Technology Innovation Program for the Social Undertakings and the People’s Livelihood in Chongqing (cstc2016shmsx0674, cstc2016shmszx80074, cstc2017shms-xdny80050) and Fundamental Research Funds for the Central Universities (XDJK2018AA004 and XDJK2018B022).

Supplementary material

11032_2018_915_MOESM1_ESM.docx (328 kb)
Supplementary Figure 1 Molecular characterization of the ten female B. rapa individuals. (A) Eight molecular markers flanked with the major QTL on the C09 chromosome of B. oleracea in the previous study (Mei et al. 2013; Ding et al. 2015) were used to screen resistance loci in parent B. rapa individuals. The ‘+’ represents the resistance band and ‘-’ represents no resistance band; red box represents the resistance QTL region; (B) Molecular characterization of parental B. oleracea‘C01’ (lane 1), parental B. rapa ‘6Y733’ (lane 2) and R01-R10 (lane 3–12) revealed with SSR marker ‘SWU01’ (left) and ‘SWU02’ (right). M denotes marker lane; (C) Information of eight markers used to track the resistance loci in the progenies (DOCX 327 kb)
11032_2018_915_MOESM2_ESM.xlsx (13 kb)
Supplementary Table 1 (XLSX 13.1 kb)


  1. Bolton M, Thomma B, Nelson B (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16CrossRefGoogle Scholar
  2. Chalhoub B et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:1255–1255CrossRefGoogle Scholar
  3. Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928CrossRefGoogle Scholar
  4. Crouch JH, Lewis BG, Mithen RF (1994) The effect of a genome substitution on the resistance of Brassica napus to infection by Leptosphaeria maculans. Plant Breed 112:265–278CrossRefGoogle Scholar
  5. Cui C, Ge X, Gautam M, Kang L, Li Z (2012) Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids. Genetics 191:725–738CrossRefGoogle Scholar
  6. Del Rió L, Bradley C, Henson R, Endres G, Hanson B, McKay K et al (2007) Impact of Sclerotinia stem rot on yield of canola. Plant Dis 91:191–194CrossRefGoogle Scholar
  7. Diederichsen E, Sacristan MD (1996) Disease response of resynthesized Brassica napus L. lines carrying different combinations of resistance to Plasmodiophora brassicae Wor. Plant Breed 115:5–10CrossRefGoogle Scholar
  8. Ding Y, Mei J, Li Q, Liu Y, Wan H, Wang L, Becker H, Qian W (2013) Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genet Resour Crop Evol 60:1615–1619CrossRefGoogle Scholar
  9. Ding Y, Mei J, Liu Y, Wang L, Li Y, Wan H, Li J, Qian W (2015) Transfer of sclerotinia stem rot resistance from wild Brassica oleracea into B. rapa. Mol Breed 35:225CrossRefGoogle Scholar
  10. Dreyer F, Graichen K, Jung C (2001) A major quantitative trait locus for resistance to turnip yellows virus (TuYV, syn. beet western yellows virus, BWYV) in rapeseed. Plant Breed 120:457–462CrossRefGoogle Scholar
  11. Falak I, McNabb W, Hacault K, Patel J (2011) Field performance of Brassica napus L. spring canola hybrids with improved resistance to Sclerotinia stem rot. In: 13th International Rapeseed Congress, Prague, pp 772–774Google Scholar
  12. Fu Y, Wei D, Dong H, He Y, Cui Y, Mei J, Wan H, Li J, Snowdon R, Friedt W, Li X, Qian W (2015) Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep 5:14407CrossRefGoogle Scholar
  13. Girke A, Schierholt A, Becker HC (2012a) Extending the rapeseed genepool with resynthesized Brassica napus L. I: genetic diversity. Genet Resour Crop Evol 59:1441–1447CrossRefGoogle Scholar
  14. Girke A, Schierholt A, Becker HC (2012b) Extending the rapeseed gene pool with resynthesized Brassica napus II: heterosis. Theor Appl Genet 124:1017–1026CrossRefGoogle Scholar
  15. Happstadius I, Ljungberg A, Kristiansson B, Dixelius C (2003) Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Plant Breed 122:30–34CrossRefGoogle Scholar
  16. Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 30:798–802CrossRefGoogle Scholar
  17. Kato A, Lamb J, Birchler J (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. PNAS 101:13554–13559CrossRefGoogle Scholar
  18. Koch S, Dunker S, Kleinhenz B, Röhrig M, Von Tiedemann A (2007) A crop loss-related forecasting model for sclerotinia stem rot in winter oilseed rape. Phytopathology 97:1186–1194CrossRefGoogle Scholar
  19. Li Y, Chen J, Bennett R, Kiddle G, Wallsgrove R, Huang Y, He Y (1999) Breeding, inheritance, and biochemical studies on Brassica napus cv. Zhougyou 821: tolerance to Sclerotinia sclerotiorum (stem rot). Proceedings of the 10th International Rapeseed Congress, pp 61, Canberra, AustraliaGoogle Scholar
  20. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, du D, Li J, Jiang L, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee TH, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930CrossRefGoogle Scholar
  21. Malvárez G, Carbone I, Grünwald N, Subbarao K, Schafer M, Kohn L (2007) New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology 97(4):470–483CrossRefGoogle Scholar
  22. Mei J, Qian L, Disi JO, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W (2011) Identification of resistant sources against Sclerotinia sclerotiorum in Brassica crops with emphasis on B. oleracea. Euphytica 177:393–400CrossRefGoogle Scholar
  23. Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi J, Li J, Liu L, Liu S, McKay J, Qian W (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556CrossRefGoogle Scholar
  24. Mei J, Liu Y, Wei D, Wittkop B, Ding Y, Li Q, Li J, Wan H, Li Z, Ge X, Frauen M, Snowdon R, Qian W, Friedt W (2015) Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet 128:639–644CrossRefGoogle Scholar
  25. Qian L, Qian W, Snowdon RJ (2014) Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics 15:1170CrossRefGoogle Scholar
  26. SAS Institute (1992) SAS technical report. SAS statistics software: changes and enhancements. Release 6.07Google Scholar
  27. Schranz M, Lysak M, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542CrossRefGoogle Scholar
  28. Sharma P, Meena P, Verma P, Saharan G, Mehta N, Singh D, Kumar A (2015) Sclerotinia sclerotiorum (Lib.) de Bary causing Sclerotinia rot in oilseed Brassicas: a review. J Oilseed Brassica 6:1–44Google Scholar
  29. Szadkowski E, Eber F, Huteau V, Lode´ M, Huneau C, Belcram H, Coriton O, Manzanares M, Delourme R, King G, Chalhoub B, Jenczewski E, Chèvre A (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112CrossRefGoogle Scholar
  30. Udall JA, Quijada PA, Polewicz H, Vogelzang R, Osborn TC (2004) Phenotypic effects of introgressing Chinese winter and resynthesized Brassica napus L. germplasm into hybrid spring canola. Crop Sci 44:1990–1996CrossRefGoogle Scholar
  31. Walsh JA, Sharpe G, Jenner CE, Lydiate DJ (1999) Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet 99:1149–1154CrossRefGoogle Scholar
  32. Wang H, Liu G, Zheng Y, Wang X, Yang Q (2004) Breeding of the Brassica napus cultivar Zhongshuang 9 with high resistance to Sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Sci Agric Sin 37(1):23–28Google Scholar
  33. Wang J et al (2009) Sensitivity of Sclerotinia sclerotiorum from oilseed crops to boscalid in Jiangsu Province of China. Crop Prot 28:882–886CrossRefGoogle Scholar
  34. Wei D, Mei J, Fu Y, Disi JO, Li J, Qian W (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34:1797–1804CrossRefGoogle Scholar
  35. Wen J, Tu J, Li Z, Fu T, Ma C, Shen J (2008) Improving ovary and embryo culture techniques for efficient resynthesis of Brassica napus from reciprocal crosses between yellow-seeded diploids B. rapa and B. oleracea. Euphytica 162:81–89CrossRefGoogle Scholar
  36. Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y (2013) Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One 8(7):e67740CrossRefGoogle Scholar
  37. Xiong Z, Chris J (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49CrossRefGoogle Scholar
  38. Yin X, Yi B, Chen W, Zhang W, Tu J, Fernando W, Fu T (2010) Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173:25–35CrossRefGoogle Scholar
  39. Yu J, Zhao M, Wang X, Tong C, Huang S, Tehrim S, Liu Y, Hua W, Liu S (2013) Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics 14:664CrossRefGoogle Scholar
  40. Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106(4):759–764CrossRefGoogle Scholar
  41. Zhao J, Udall J, Quijada P, Grau C, Meng J, Osborn T (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
  2. 2.Inner Mongolia Potato Engineering and Technology Research CentreInner Mongolia UniversityHohhotChina

Personalised recommendations