Advertisement

Molecular Breeding

, 39:7 | Cite as

High-density quantitative trait locus mapping revealed genetic architecture of leaf angle and tassel size in maize

  • Xuyang Liu
  • Luyang Hao
  • Sirong Kou
  • Erhu Su
  • Yuqian Zhou
  • Ruilian Wang
  • Abdelghany Mohamed
  • Chenxi Gao
  • Dengfeng Zhang
  • Yongxiang Li
  • Chunhui Li
  • Yanchun Song
  • Yunsu Shi
  • Tianyu Wang
  • Yu Li
Article
  • 101 Downloads

Abstract

The maize leaf angle and tassel size have close relationships with grain yield. These traits had undergone a strong selection and great morphological changes during domestication and improvement. To understand the genetic architecture of these morphological traits, an F2:3 population was developed using the cross of Lv28 by H082183, the latter having more erect leaves and small tassels. Using a modified hidden Markov model (HMM), the genetic map covering 1495.79 cM was obtained from 1965 bin markers. QTL mapping identified six leaf angle QTL, seven tassel branch number QTL, and ten tassel dry weight QTL, including three large-effect QTL (R2 > 10%) qLA1_2, qLA2, and qTBN8. The inflorescence development gene tasselseed2 (ts2) and zea floricaula leafy2 (zfl2) were co-located in the interval of qTW1 and qTW2_1. Seven genes in qLA1_2 showed evidence of selection during maize improvement, including two protein kinase genes (GRMZM2G138475 and GRMZM2G114093) and two trehalose-phosphatase genes (GRMZM2G347280 and GRMZM2G008226). Interestingly, the significant SNPs associated with tassel branch number and the selection region in qTBN8 were consistent at 5′ non-coding region of GRMZM5G873917. And the nucleotide diversity analysis revealed that the 5′ regulatory region of GRMZM5G873917 was under strong selection. These results provide insights into genetic architectures of maize morphological traits and alleles which have potentials in maize breeding.

Keywords

Maize (Zea mays L.) QTL (quantitative trait locus) Leaf angle Tassel weight Tassel branch number F2:3 population 

Notes

Acknowledgments

We are grateful to Jianbing Yan from the Huazhong Agricultural University for kindly providing the genotypic data and phenotypic data.

Funding

This research was supported by The National Key Research and Development Program of China (2016YFD0100303) and the CAAS Innovation Program.

Supplementary material

11032_2018_914_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2491 kb)
11032_2018_914_MOESM2_ESM.docx (16 kb)
Table S1 (DOCX 16.4 kb)
11032_2018_914_MOESM3_ESM.docx (30 kb)
Table S2 (DOCX 29.5 kb)
11032_2018_914_MOESM4_ESM.docx (20 kb)
Table S3 (DOCX 20.1 kb)
11032_2018_914_MOESM5_ESM.docx (50 kb)
Table S4 (DOCX 49.5 kb)
11032_2018_914_MOESM6_ESM.docx (215 kb)
Table S5 (DOCX 214 kb)

References

  1. Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265CrossRefGoogle Scholar
  2. Bauer P, Lubkowitz M, Tyers R, Nemoto K, Meeley RB, Goff SA, Freeling M (2004) Regulation and a conserved intron sequence of liguleless3/4 KNOX class-I homeobox genes in grasses. Planta 219:359–368CrossRefGoogle Scholar
  3. Berke TG, Rocheford TR (1999) Quantitative trait loci for tassel traits in maize. Crop Sci 39:1439–1443CrossRefGoogle Scholar
  4. Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395CrossRefGoogle Scholar
  5. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585CrossRefGoogle Scholar
  6. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefGoogle Scholar
  7. Brewbaker JL (2015) Diversity and genetics of tassel branch numbers in maize. Crop Sci 55:65–78CrossRefGoogle Scholar
  8. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, et al. (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383CrossRefGoogle Scholar
  9. Buescher EM, Moon J, Runkel A, Hake S, Dilkes BP (2014) Natural variation at sympathy for the ligule controls penetrance of the semidominant Liguleless narrow-R mutation in Zea mays. G3 4:2297–2306CrossRefGoogle Scholar
  10. Cassani E, Landoni M, Pilu R (2006) Characterization of the Ra1 maize gene involved in inflorescence architecture. Sex Plant Reprod 19:145–150CrossRefGoogle Scholar
  11. Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M, Gallavotti A (2014) The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell 26:2962–2977CrossRefGoogle Scholar
  12. Chen H, Patterson N, Reich D (2010) Population differentiation as a test for selective sweeps. Genome Res 20:393–402CrossRefGoogle Scholar
  13. Chen ZL, Wang BB, Dong XM, Liu H, Ren LH, Chen J, Hauck A, Song WB, Lai JS (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics 15:433CrossRefGoogle Scholar
  14. Chen ZJ, Yang C, Tang DG, Zhang L, Zhang L, Qu JT, Liu J (2017) Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. J Integr Agric 16:1432–1442CrossRefGoogle Scholar
  15. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, et al. (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807CrossRefGoogle Scholar
  16. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241CrossRefGoogle Scholar
  17. Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521CrossRefGoogle Scholar
  18. Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A 111:18775–18780CrossRefGoogle Scholar
  19. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CrossRefGoogle Scholar
  20. DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757–768CrossRefGoogle Scholar
  21. Ding J, Zhang L, Chen J, Li X, Li Y, Cheng H, Huang R, Zhou B, Li Z, Wang J, et al. (2015) Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping population. PLoS One 10:e0141619CrossRefGoogle Scholar
  22. Doebley J (1993) The maize and teosinte male inflorescence: a numerical taxonomic study. Ann Mo Bot Gard 70:32–70CrossRefGoogle Scholar
  23. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202Google Scholar
  24. Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci 39:1622–1630CrossRefGoogle Scholar
  25. Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, et al. (2013) RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun 4:2832CrossRefGoogle Scholar
  26. Gallavotti A, Malcomber S, Gaines C, Stanfield S, Whipple C, Kellogg E, Schmidt RJ (2011) BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears. Plant Cell 23:1756–1771CrossRefGoogle Scholar
  27. Grogan CO (1956) Detasseling responses in corn. Agron J 48:247–249CrossRefGoogle Scholar
  28. Huang X, Han B (2012) A crop of maize variants. Nat Genet 44:734–735CrossRefGoogle Scholar
  29. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076CrossRefGoogle Scholar
  30. Hufford MB, Xu X, van Heerwaarden J, Pyhajarvi T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, et al. (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811CrossRefGoogle Scholar
  31. Hunter R, Daynard T, Hume D, Tanner J, Curtis J, Kannenberg L (1969) Effect of tassel removal on grain yield of corn (Zea mays L.). Crop Sci 9:405–406CrossRefGoogle Scholar
  32. Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu Q, Goldshmidt A, Meeley R, Bartlett M, et al. (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48:785–791CrossRefGoogle Scholar
  33. Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6:1877–1887CrossRefGoogle Scholar
  34. Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121:951–959CrossRefGoogle Scholar
  35. Lauer S, Hall BD, Ulaosmanovic EM, Anderson SR, Nelson B, Smith S (2012) Morphological changes in parental lines of pioneer brand maize hybrids in the US central corn belt. Crop Sci 52:1033–1043CrossRefGoogle Scholar
  36. Lee EA, Tollenaar M (2007) Physiological basis of successful breeding strategies for maize grain yield. Crop Sci 47:S202–S215Google Scholar
  37. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938CrossRefGoogle Scholar
  38. Li J, Lease KA, Tax FE, Walker JC (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:5916–5921CrossRefGoogle Scholar
  39. Li C, Li Y, Sun B, Peng B, Liu C, Liu Z, Yang Z, Li Q, Tan W, Zhang Y, et al. (2013a) Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica 193:303–316CrossRefGoogle Scholar
  40. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, et al. (2013b) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50CrossRefGoogle Scholar
  41. Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Wang T, Li Y (2015) Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One 10:e0121624CrossRefGoogle Scholar
  42. Li C, Liu C, Qi X, Wu Y, Fei X, Mao L, Cheng B, Li X, Xie C (2017) RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol J 15:1566–1576CrossRefGoogle Scholar
  43. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  44. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399CrossRefGoogle Scholar
  45. Liu T, Zhang J, Wang M, Wang Z, Li G, Qu L, Wang G (2007) Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Rep 26:2091–2099CrossRefGoogle Scholar
  46. Lu M, Zhou F, Xie CX, Li MS, Xu YB, Warburton M, Zhang SH (2007) Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas 29:1131–1138CrossRefGoogle Scholar
  47. Mantilla-Perez MB, Salas Fernandez MG (2017) Differential manipulation of leaf angle throughout the canopy: current status and prospects. J Exp Bot 68:5699–5717CrossRefGoogle Scholar
  48. McSteen P, Hake S (2001) barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128:2881–2891PubMedGoogle Scholar
  49. McSteen P, Malcomber S, Skirpan A, Lunde C, Wu XT, Kellogg E, Hake S (2007) barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144:1000–1011CrossRefGoogle Scholar
  50. Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283CrossRefGoogle Scholar
  51. Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73 × MO17 population of maize. Crop Sci 42:1902–1909CrossRefGoogle Scholar
  52. Moon J, Candela H, Hake S (2013) The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Development 140:405–412CrossRefGoogle Scholar
  53. Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev 11:616–628CrossRefGoogle Scholar
  54. Muehlbauer GJ, Fowler JE, Girard L, Tyers R, Harper L, Freeling M (1999) Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. Plant Physiol 119:651–662CrossRefGoogle Scholar
  55. Pendleton JW, Smith GE, Winter SR, Johnston TJ (1968) Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agron J 60:422–424CrossRefGoogle Scholar
  56. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230CrossRefGoogle Scholar
  57. Sigmon B, Vollbrecht E (2010) Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol 19:1296–1311CrossRefGoogle Scholar
  58. Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 15:2755–2766CrossRefGoogle Scholar
  59. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162CrossRefGoogle Scholar
  60. Upadyayula N, da Silva HS, Bohn MO, Rocheford TR (2006a) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet 112:592–606CrossRefGoogle Scholar
  61. Upadyayula N, Wassom J, Bohn MO, Rocheford TR (2006b) Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture. Theor Appl Genet 113:1395–1407CrossRefGoogle Scholar
  62. Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13:260–269CrossRefGoogle Scholar
  63. Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity (Edinb) 112:30–38CrossRefGoogle Scholar
  64. Walsh J, Waters CA, Freeling M (1998) The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Dev 12:208–218CrossRefGoogle Scholar
  65. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279CrossRefGoogle Scholar
  66. Wu X, Li Y, Shi Y, Song Y, Zhang D, Li C, Buckler ES, Li Y, Zhang Z, Wang T (2016) Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J 14:1551–1562CrossRefGoogle Scholar
  67. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultra high-density linkage map based on population sequencing. Proc Natl Acad Sci U S A 107:10578–10583CrossRefGoogle Scholar
  68. Xu GH, Wang XF, Huang C, Xu DY, Li D, Tian JG, Chen QY, Wang CL, Liang YM, Wu YY, et al. (2017) Complex genetic architecture underlies maize tassel domestication. New Phytol 214:852–864CrossRefGoogle Scholar
  69. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1606CrossRefGoogle Scholar
  70. Yang N, Lu YL, Yang XH, Huang J, Zhou Y, Ali F, Wen WW, Liu J, Li JS, Yan JB (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic yraits in an enlarged maize association panel. PLoS Genet 10(9):e1004573CrossRefGoogle Scholar
  71. Yu YT, Zhang JM, Shi YS, Song YC, Wang TY, Li Y (2006) QTL analysis for plant height and leaf angle by using different populations of maize. J Maize Sci 14:88–92Google Scholar
  72. Zhang J, Ku LX, Han ZP, Guo SL, Liu HJ, Zhang ZZ, Cao LR, Cui XJ, Chen YH (2014) The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). J Exp Bot 65:5063–5076CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Xuyang Liu
    • 1
  • Luyang Hao
    • 1
  • Sirong Kou
    • 2
  • Erhu Su
    • 3
  • Yuqian Zhou
    • 2
  • Ruilian Wang
    • 4
  • Abdelghany Mohamed
    • 1
  • Chenxi Gao
    • 1
  • Dengfeng Zhang
    • 1
  • Yongxiang Li
    • 1
  • Chunhui Li
    • 1
  • Yanchun Song
    • 1
  • Yunsu Shi
    • 1
  • Tianyu Wang
    • 1
  • Yu Li
    • 1
  1. 1.Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  2. 2.Crop InstituteGansu Academy of Agricultural SciencesLanzhouChina
  3. 3.Maize InstituteInner Mongolia Academy of Agricultural and Animal Husbandry SciencesHohhotChina
  4. 4.Bayannur Academy of Agricultural Sciences of Inner MongoliaBayannurChina

Personalised recommendations