Advertisement

Molecular Breeding

, 35:45 | Cite as

Identification of SNPs linked to eight apple disease resistance loci

  • Melanie Jänsch
  • Giovanni A. L. Broggini
  • Juliane Weger
  • Vincent G. M. Bus
  • Susan E. Gardiner
  • Heather Bassett
  • Andrea Patocchi
Article

Abstract

Although genetic and genomic studies have progressed to a very advanced level in apple, the application of this acquired knowledge for marker-assisted breeding (MAB) remains limited mainly to pyramiding monogenetically inherited resistances against apple scab, powdery mildew and fire blight. Crucial contributing reasons are the uncertainty in map position of some genes and the lack of tightly linked markers suitable for high-throughput analysis (HTA) that reduces the costs of MAB. Single-nucleotide polymorphism (SNP) markers have the potential to resolve these major issues. Here we present the refined map positions of the apple scab resistance genes Rvi2, Rvi4 and Rvi11, and the systematic search for SNPs associated with apple scab (Rvi2, Rvi4, Rvi6, Rvi11, Rvi15), powdery mildew (Pl2) and fire blight (FB_E and FB_MR5) resistances. With the aid of the ‘Golden Delicious’ sequence, several SNPs linked to each of the eight resistances were identified in the genomic regions around the resistance loci previously delimited by simple sequence repeat markers. The specificity of the alleles in coupling with the resistances was determined by screening eight apple genotypes, six of them being founding clones of modern apple cultivars. These SNPs can now be used to develop SNP-based HTA assays for MAB.

Keywords

Venturia inaequalis Podosphaera leucotricha Erwinia amylovora Malus × domestica Marker-Assisted Selection 

Notes

Acknowledgments

The authors thank Dr. Elena Zini for the support in the development of the Rvi11 SSR markers. This work has been (partly) funded under the EU Seventh Framework Programme by the FruitBreedomics Project No. 265582: Integrated Approach for Increasing Breeding Efficiency in Fruit Tree Crop. The views expressed in this work are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. The New Zealand component of the research was funded by the Plant and Food Research Pipfruit Core programme 1433.

Supplementary material

11032_2015_242_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)
11032_2015_242_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)
11032_2015_242_MOESM3_ESM.tif (262 kb)
Example of mapping of a SNP (SNP FBsnRvi2-7_Y536) associated with the resistance gene Rvi2 and verification of the level of specificity of the allele in coupling (T). The number of resistant, susceptible, and recombinants has been reduced to two for each type of progeny plant for graphical reason. TSR34T15: resistant parent; ‘Golden Delicious’: susceptible parent; ResPP: resistant progeny plant; SusPP: susceptible progeny plant; RecSusPP: susceptible recombinant progeny plant; RecResPP: resistant recombinant progeny plant; Genotypes from ‘Braeburn’ to ‘Jonathan’: founders tested to verify the specificity of the SNP allele associated with the resistance Rvi2. As ‘Cox’ Orange Pippin’ amplifies the allele in coupling with the Rvi2 resistance markers based on this SNP will not be 100% specific for this resistance gene (TIFF 261 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Bassil N, Lewers K (2009) Genomics opportunities, new crops and new products. In: Folta KM, Gardiner SE (eds), Genetics and genomics of rosaceae, plant genetics and genomics: crops and models, 6:55–70Google Scholar
  3. Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890CrossRefPubMedCentralPubMedGoogle Scholar
  4. Broggini GAL, Galli P, Parravicini G, Gianfranceschi L, Gessler C, Patocchi A (2009) HcrVf paralogs are present on linkage groups 1 and 6 of Malus. Genome 52:129–138CrossRefPubMedGoogle Scholar
  5. Broggini GAL, Wöhner T, Fahrentrapp J, Kost TD, Flachowsky H, Peil A, Hanke V, Richter K, Patocchi A, Gessler C (2014) Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotech J 12:728–733Google Scholar
  6. Bus VGM, White A, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, Rikkerink E (2002) An update on apple scab resistance breeding in New Zealand. Acta Hort 595:43–47Google Scholar
  7. Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Basset HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol Breed 15:103–116CrossRefGoogle Scholar
  8. Bus VGM, Chagné D, Bassett H, Bowatte D, Calenge F, Celton J-M, Durel C, Malone M, Patocchi A, Ranatunga A, Rikkerink E, Tustin D, Zhou J, Gardiner S (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genome 4:233–236Google Scholar
  9. Bus VGM, Esmenjaud D, Buck E, Laurens F (2009) Application of genetic markers in rosaceous crop. In: Folta KM, Gardiner SE (eds), Genetics and genomics of rosaceae, plant genetics and genomics: crops and models, 6:563–599 Google Scholar
  10. Celton J-M, Tustin DS, Chagné D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genome 5:93–107CrossRefGoogle Scholar
  11. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363:557–572CrossRefGoogle Scholar
  12. Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genet Genome 9:237–251CrossRefGoogle Scholar
  13. Fernández-Fernández F, Antanaviciute L, van Dyk MM, Tobutt KR, Evans KM, Rees DJG, Dunwell JM, Sargent DJ (2012) A genetic linkage map of an apple rootstock progeny anchored to the Malus genome sequence. Tree Genet Genome 8:991–1002CrossRefGoogle Scholar
  14. Frey JE, Frey B, Sauer C, Kellerhals M (2004) Efficient low-cost DNA extraction and multiplex fluorescent PCR method for high-throughput marker-assisted selection (MAS) in apple breeding. Plant Breed 123:554–557CrossRefGoogle Scholar
  15. Galli P, Broggini GAL, Gessler C, Patocchi A (2010a) Phenotypic characterization of the Rvi15 (Vr2) apple scab resistance. J Plant Pathol 92:219–226Google Scholar
  16. Galli P, Broggini GAL, Kellerhals M, Gessler C, Patocchi A (2010b) High-resolution genetic map of the Rvi15 (Vr2) apple scab resistance locus. Mol Breed 26:561–572CrossRefGoogle Scholar
  17. Galli P, Patocchi A, Broggini GAL, Gessler C (2010c) The Rvi15 (Vr2) apple scab resistance locus contains three TIR–NBS–LRR genes. Mol Plant Microb Interact 23:608–617CrossRefGoogle Scholar
  18. Gardiner SE, Bus VGM, Rusholme RL, Chagne D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Fruits and nuts. Berlin genome mapping and molecular breeding in plants 4. Springer, New York, pp 1–62Google Scholar
  19. Gardiner S, Norelli J, de Silva N, Fazio G, Peil A, Malnoy M, Horner M, Bowatte D, Carlisle C, Wiedow C, Wan Y, Bassett C, Baldo A, Celton J-M, Richter K, Aldwinckle H, Bus V (2012) Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘robusta 5’ accessions. BMC Genet 13:25CrossRefPubMedCentralPubMedGoogle Scholar
  20. Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204CrossRefPubMedGoogle Scholar
  21. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254CrossRefGoogle Scholar
  22. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709CrossRefPubMedGoogle Scholar
  23. Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130CrossRefPubMedCentralPubMedGoogle Scholar
  24. Jänsch M, Frey JE, Hilber-Bodmer M, Broggini GAL, Weger J, Schnabel G, Patocchi A (2012) SSR marker analysis of Monilinia fructicola from Swiss apricots suggests introduction of the pathogen from neighboring countries and the United States. Plant Pathol 61:247–254. doi: 10.1111/j.1365-3059.2011.02511.x CrossRefGoogle Scholar
  25. Koller B, Gianfranceschi L, Seglias N, McDermott J, Gessler C (1994) DNA markers linked to the Malus floribunda 821 scab resistance. Plant Mol Biol 26:597–602CrossRefPubMedGoogle Scholar
  26. Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS One 7(5):e36674. doi: 10.1371/journal.pone.0036674 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Laurens F, Durel C-E, Patocchi A, Peil A, Salvi S, Tartarini S, Velasco R, van der Weg E (2010) review on apple genetics and breeding programmes and presentation of a new European initiative to increase fruit breeding efficiency. J Fruit Sci 27:102–107Google Scholar
  28. Le Roux P-M, Flachowsky H, Hanke M-V, Gessler C, Patocchi A (2012) Use of a transgenic early flowering approach in apple (Malus × domestica Borkh.) to introgress fire blight resistance from cultivar Evereste. Mol Breed 30:857–874CrossRefGoogle Scholar
  29. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  30. Micheletti D, Troggio M, Zharkikh A, Costa F, Malnoy M, Velasco R, Salvi S (2011) Genetic diversity of the genus Malus and implications for linkage mapping with SNPs. Tree Genet Genome 7:857–868CrossRefGoogle Scholar
  31. Noiton D, Shelbourne CJA (1992) Quantitative genetics in an apple breeding strategy. Euphytica 60:213–219Google Scholar
  32. Norelli JL, Farrell RE, Bassett CL, Baldo AM, Lalli DA, Aldwinckle HS, Wisniewski ME (2009) Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genet Genome 5:27–40CrossRefGoogle Scholar
  33. Parravicini G, Gessler C, Denance C, Lasserre-Zuber P, Vergne E, Brisset M-N, Patocchi A, Durel C-E, Broggini GAL (2011) Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS–LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol 12:493–505CrossRefPubMedGoogle Scholar
  34. Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf region. Theor Appl Genet 99:1012–1017CrossRefGoogle Scholar
  35. Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol Gen Genet 262:84–891CrossRefGoogle Scholar
  36. Patocchi A, Frei A, Frey JE, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed 24:337–347CrossRefGoogle Scholar
  37. Rezzonico F, Smits THM, Montesinos E, Frey JE, Duffy B (2009) Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 9:204–226Google Scholar
  38. Rikkerink HA, Hilario-Andrade EM, Dare AP, Gardiner SE, Yoon M, Bus VGM (2007) Resistance gene and uses thereof. New Zealand Patent Application 563032, filed 31 Oct 2007Google Scholar
  39. Roche P, Alston FH, Maliepaard C, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor Appl Genet 94:528–533CrossRefGoogle Scholar
  40. Rozen S, Skaletsky HJ (2000) PRIMER3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  41. Schouten HJ, Brinkhuis J, van der Burgh A, Schaart JG, Groenwold R, Broggini GAL, Gessler C (2014) Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet Genome 10:251–260CrossRefGoogle Scholar
  42. Silfverberg-Dilworth E, Matasci CL, Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genome 2:202–224CrossRefGoogle Scholar
  43. Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118:183–186CrossRefGoogle Scholar
  44. van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops Hortic Res 1, Article number: 14022 doi: 10.1038/hortres.2014.22
  45. van Ooijen JW (2006) JoinMap® 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  46. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. doi: 10.1038/ng.654 CrossRefPubMedGoogle Scholar
  47. Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123:321–326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Melanie Jänsch
    • 1
  • Giovanni A. L. Broggini
    • 1
    • 2
  • Juliane Weger
    • 1
    • 2
  • Vincent G. M. Bus
    • 3
  • Susan E. Gardiner
    • 4
  • Heather Bassett
    • 4
  • Andrea Patocchi
    • 1
  1. 1.AgroscopeInstitute for Plant Production Sciences, PhytopathologyWädenswilSwitzerland
  2. 2.Plant Pathology GroupSwiss Federal Institute of TechnologyZurichSwitzerland
  3. 3.The New Zealand Institute for Plant and Food Research LimitedHavelock NorthNew Zealand
  4. 4.The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand

Personalised recommendations