Advertisement

Expedient synthesis of novel antibacterial hydrazono-4-thiazolidinones under catalysis of a natural-based binary ionic liquid

  • Maedeh Saeedi Mirakmahaleh
  • Kurosh Rad-MoghadamEmail author
  • Hassan Kefayati
  • Soroush Falakro
Original Article
  • 16 Downloads

Abstract

A library of pyran-2H-one-3-ylmethylidene and chromene-2H-one-3-ylmethylidene derivatives of the titled heterocyclic framework was synthesized from 3-acyl-4-hydroxypyran/chromene-2H-one via sequential reaction with thiosemicarbazide and dialkyl acetylenedicarboxylates. The syntheses were carried out under efficient catalysis of a new binary ionic liquid mixture [l-prolinium chloride][1-methylimidazolium-3-sulfonate] in one pot and solvent-free conditions. Calculations based on density functional theory displayed that the barrier energy for interconversion of the two possible diastereomeric isomers of each product is less than the thermal energy of molecules at room temperature, as only one product can be resolved from a given reaction mixture. This seems to be the case for the previously reported hydrazonothiazolidines. The binary ionic liquid mixture melts at near room temperature and can be considered as a solution of HCl in 1:1 mixture of two zwitterionic species. It proved to be more efficient than its constituents in catalyzing the above synthesis in one-pot operation. Some of the synthesized products have shown pronounced antibacterial activities. The ionic liquid is virtually stable in air and moisture, as can be retrieved several times without appreciable decrease in its catalytic activity.

Graphic abstract

Keywords

Thiazolidin-4-one Binary ionic liquid 4-Hydroxypyran-2H-one 4-Hydroxychromene-2H-one Homogeneous catalysis 

Abbreviations

IL

Ionic liquid

BIL

Binary ionic liquid

MImS

3-Methylimidazolium-1-sulfonate

[MSIm]Cl

1-Methyl-3-sulfonylimidazolium chloride

BMIm

1-Butyl-3-methylimidazolium

LPC

l-Prolinium chloride

DMSO-d6

Hexadeuterated dimethylsulfoxide

p-TSA

para-Toluenesulfonic acid

DMAD

Dimethylacetylenedicarboxylate

DFT

Density functional theory

Notes

Acknowledgement

Support of this work by the Research Council of University of Guilan is gratefully acknowledged.

Supplementary material

11030_2019_10028_MOESM1_ESM.docx (3.7 mb)
Supplementary material 1 (DOCX 3815 kb)

References

  1. 1.
    Swain CG, Ohno A, Roe DK, Brown R, Maugh T II (1967) Tetrahexylammonium benzoate, a liguid salt at 25.degree., a solvent for kinetics or electrochemistry. J Am Chem Soc 89:2648–2649.  https://doi.org/10.1021/ja00987a025 CrossRefGoogle Scholar
  2. 2.
    Boon JA, Levisky JA, Pflug JL, Wilkes JS (1986) Friedel–Crafts reactions in ambient-temperature molten salts. J Org Chem 51:480–483.  https://doi.org/10.1021/jo00354a013 CrossRefGoogle Scholar
  3. 3.
    Singh H, Kumari S, Khurana JM (2014) A new green approach for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives using task specific acidic ionic liquid [NMP]H2PO4. Chin Chem Lett 25:1336–1340.  https://doi.org/10.1016/j.cclet.2014.05.014 CrossRefGoogle Scholar
  4. 4.
    Tawfik SM (2016) Ionic liquids based gemini cationic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution. J Mol Liq 216:624–635.  https://doi.org/10.1016/j.molliq.2016.01.066 CrossRefGoogle Scholar
  5. 5.
    Yadav JS, Reddy BVS, Baishya G, Reddy KV, Narsaiah AV (2005) Conjugate addition of indoles to α, β-unsaturated ketones using Cu(OTf)2 immobilized in ionic liquids. Tetrahedron 61:9541–9544.  https://doi.org/10.1016/j.tet.2005.07.095 CrossRefGoogle Scholar
  6. 6.
    Rad-Moghadam K, Azimi SC (2012) Mg(BF4)2 doped in [BMIm][BF4]: a homogeneous ionic liquid-catalyst for efficient synthesis of 1,8-dioxo-octahydroxanthenes, decahydroacridines and 14-aryl-14H-dibenzo[a, j]xanthenes. J Mol Catal A Chem 363–364:465–469.  https://doi.org/10.1016/j.molcata.2012.07.026 CrossRefGoogle Scholar
  7. 7.
    Toorchi Roudsari S, Rad-Moghadam K (2018) A sulfonating ionic liquid for one-pot pseudo four-component synthesis of novel 3-chlorosulfonyl-δ-sultones: a novel class of fluorescent compounds. Tetrahedron 74:4047–4052.  https://doi.org/10.1016/j.tet.2018.06.012 CrossRefGoogle Scholar
  8. 8.
    Rad-Moghadam K, Mousazadeh Hassani SAR, Toorchi Roudsari S (2016) N-methyl-2-pyrrolidonium chlorosulfonate: an efficient ionic-liquid catalyst and mild sulfonating agent for one-pot synthesis of δ-sultones. J Mol Liq 218:275–280.  https://doi.org/10.1016/j.molliq.2016.02.082 CrossRefGoogle Scholar
  9. 9.
    Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60.  https://doi.org/10.1016/j.molliq.2016.11.123 CrossRefGoogle Scholar
  10. 10.
    Zhang X, Li X, Fan X, Wang X, Li D, Qu G, Wang J (2009) Ionic liquid promoted preparation of 4H-thiopyran and pyrimidine nucleoside-thiopyran hybrids through one-pot multi-component reaction of thioamide. Mol Divers 13:57.  https://doi.org/10.1007/s11030-008-9098-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Khazaei A, Zolfigol MA, Moosavi-Zare AR, Afsar J, Zare A, KhakyzadehV Beyzavi MH (2013) Synthesis of hexahydroquinolines using the new ionic liquid sulfonic acid functionalized pyridinium chloride as a catalyst. Chin J Catal 34:1936–1944.  https://doi.org/10.1016/S1872-2067(12)60678-0 CrossRefGoogle Scholar
  12. 12.
    Rad-Moghadam K, Sharifi-Kiasaraie M, Taheri-Amlashi H (2010) Synthesis of symmetrical and unsymmetrical 3,3-di(indolyl)indolin-2-ones under controlled catalysis of ionic liquids. Tetrahedron 66:2316–2321.  https://doi.org/10.1016/j.tet.2010.02.017 CrossRefGoogle Scholar
  13. 13.
    Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426.  https://doi.org/10.1021/cr500411q CrossRefPubMedGoogle Scholar
  14. 14.
    Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110.  https://doi.org/10.1021/jp044626d CrossRefPubMedGoogle Scholar
  15. 15.
    Thomazeau C, Oliver-Bourbigou H, Magna L, Luts S, Gilbert B (2003) Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc 125:5264–5265.  https://doi.org/10.1021/ja0297382 CrossRefPubMedGoogle Scholar
  16. 16.
    Hagiwara R, Ito Y (2000) Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J Fluor Chem 105:221–227.  https://doi.org/10.1016/S0022-1139(99)00267-5 CrossRefGoogle Scholar
  17. 17.
    Xiao Y, Huang X (2018) The physicochemical properties of a room-temperature liquidus binary ionic liquid mixture of [HNMP][CH3SO3]/[Bmim]Cl and its application for fructose conversion to 5-hydroxymethylfurfural. RSC Adv 8:18784–18791.  https://doi.org/10.1039/C8RA03604G CrossRefGoogle Scholar
  18. 18.
    Thawarkar S, Khupse ND, Shinde DR, Kumar A (2019) Understanding the behavior of mixtures of protic-aprotic and protic-protic ionic liquids: conductivity, viscosity, diffusion coefficient and ionicity. J Mol Liq 276:986–994.  https://doi.org/10.1016/j.molliq.2018.12.024 CrossRefGoogle Scholar
  19. 19.
    Kalurazi SY, Rad-Moghadam K, Moradi S (2017) Efficient catalytic application of a binary ionic liquid mixture in the synthesis of novel spiro[4H-pyridine-oxindoles]. New J Chem 41:10291–10298.  https://doi.org/10.1039/C7NJ01858D CrossRefGoogle Scholar
  20. 20.
    Sone H, Kondo T, Kiryu M, Ishiwata H, Ojika M, Yamada K (1995) Dolabellin, a cytotoxic bisthiazole metabolite from the sea hare dolabella auricularia: structural determination and synthesis. J Org Chem 60:4774–4781.  https://doi.org/10.1021/jo00120a021 CrossRefGoogle Scholar
  21. 21.
    Sasse F, Sieinmetz H, Heil J, Höfle G, Reichenbach H (2000) Tubulysins, new cytostatic peptides from myxobacteria acting on microtubule. J Antibiot 53:879–885.  https://doi.org/10.7164/antibiotics.53.879 CrossRefPubMedGoogle Scholar
  22. 22.
    Xie W, Wu Y, Zhang J, Mei Q, Zhang Y, Zhu N, Liu R, Zhang H (2018) Design, synthesis and biological evaluations of novel pyridone-thiazole hybrid molecules as antitumor agents. Eur J Med Chem 145:35–40.  https://doi.org/10.1016/j.ejmech.2017.12.038 CrossRefGoogle Scholar
  23. 23.
    Archana A, Srivastava VK, Kumar A (2002) Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)-ones as potential anticonvulsant agents. Eur J Med Chem 37:873–882.  https://doi.org/10.1016/S0223-5234(02)01389-2 CrossRefPubMedGoogle Scholar
  24. 24.
    Agarwal A, Lata S, Saxena KK, Srivastava VK, Kumar A (2006) Synthesis and anticonvulsant activity of some potential thiazolidinonyl 2-oxo/thiobarbituric acids. Eur J Med Chem 41:1223–1229.  https://doi.org/10.1016/j.ejmech.2006.03.029 CrossRefPubMedGoogle Scholar
  25. 25.
    Gundlewad GB, Patil BR (2018) Synthesis and evaluation of some novel 2-amino-4-aryl thiazoles for antitubercular activity. J Heterocycl Chem 55:769–774.  https://doi.org/10.1002/jhet.3098 CrossRefGoogle Scholar
  26. 26.
    Hargrave KD, Hess FK, Oliver JT (1983) N-(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J Med Chem 26:1158–1163.  https://doi.org/10.1021/jm00362a014 CrossRefPubMedGoogle Scholar
  27. 27.
    Ergenc N, Capan G, Günay NS, Özkirimli S, Güngör M, Özbey S, Kendi E (1999) Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch Pharm 332:343–347.  https://doi.org/10.1002/(SICI)1521-4184(199910)332:10%3c3C343:AID-ARDP343%3e3E3.0.CO;2-0 CrossRefGoogle Scholar
  28. 28.
    Jaen JC, Wise LD, Caprathe BW, Tecle H, Bergmeier S, Humblet CC, Heffner TG, Meltzner LT, Pugsley TA (1990) 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J Med Chem 33:311–317.  https://doi.org/10.1021/jm00163a051 CrossRefPubMedGoogle Scholar
  29. 29.
    Saroha M, Khurana JM (2019) Acetic acid mediated regioselective synthesis of 2,4,5-trisubstituted thiazoles by a domino multicomponent reaction. New J Chem 43:8644–8650.  https://doi.org/10.1039/C9NJ01717H CrossRefGoogle Scholar
  30. 30.
    Zhang H (2014) A novel one-pot multicomponent enzymatic synthesis of 2,4-disubstituted thiazoles. Catal Lett 144:928–934.  https://doi.org/10.1007/s10562-014-1229-1 CrossRefGoogle Scholar
  31. 31.
    Nirwan S, Chahal V, Kakkar R (2019) Thiazolidinones: synthesis, reactivity, and their biological applications. J Heterocycl Chem 56:1239–1253.  https://doi.org/10.1002/jhet.3514 CrossRefGoogle Scholar
  32. 32.
    Lobo HR, Singh BS, Shankarling GS (2012) Lipase and deep eutectic mixture catalyzed efficient synthesis of thiazoles in water at room temperature. Catal Lett 142:1369–1375.  https://doi.org/10.1007/s10562-012-0902-5 CrossRefGoogle Scholar
  33. 33.
    Goel A, Ram VJ (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron 65:7865–7913.  https://doi.org/10.1016/j.tet.2009.06.031 CrossRefGoogle Scholar
  34. 34.
    Suzuki K, Kuwahara A, Nishikiori T, Nakagawa T (1997) NF00659A1, A2, A3, B1 and B2, novel antitumor antibiotics produced by Aspergillus sp. NF 00659. J Antibiot 50:318–324.  https://doi.org/10.7164/antibiotics.50.318 CrossRefPubMedGoogle Scholar
  35. 35.
    Irschik H, Gerth K, Hofle G, Kohl W, Reichenbach H (1983) The myxopyronins, new inthibitors of bacterial RNA synthesis from myxococcus fulvus (myxobacterales). J Antibiot 36:1651–1658.  https://doi.org/10.7164/antibiotics.36.1651 CrossRefPubMedGoogle Scholar
  36. 36.
    Smyth T, Ramachandran VN, Smyth WF (2009) A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int J Antimicrob Agents 33:421–426.  https://doi.org/10.1016/j.ijantimicag.2008.10.022 CrossRefPubMedGoogle Scholar
  37. 37.
    Ollinger P, Wolfbeis OS, Junek H (1975) Darstellung, E/Z-isomerie and gehinderte rotation an N-substituierten aminomethylen-chromandionen,-pyrandionen and-pyridindionen. Monatsh Chem 106:963–971.  https://doi.org/10.1007/BF00900875 CrossRefGoogle Scholar
  38. 38.
    Liao Y-X, Kuo P-Y, Yang D-Y (2003) Efficient synthesis of trisubstituted [1]benzopyrano[4,3-b]pyrrol-4(1H)-one derivatives from 4-hydroxycoumarin. Tetrahedron Lett 44:1599–1602.  https://doi.org/10.1016/S0040-4039(03)00012-1 CrossRefGoogle Scholar
  39. 39.
    Raghuvanshi DS, Singh KN (2010) An efficient protocol for multicomponent synthesis of spirooxindoles employing l-proline as catalyst at room temperature. J Heterocycl Chem 47:1323–1327.  https://doi.org/10.1002/jhet.451 CrossRefGoogle Scholar
  40. 40.
    Kiruthika SE, Perumal PT (2014) One-pot four-component approach for the construction of dihydropyridines and dihydropyridinones using amines and activated alkynes. RSC Adv 4:3758–3767.  https://doi.org/10.1039/C3RA45850D CrossRefGoogle Scholar
  41. 41.
    Hasaninejad A, Mandegani F (2013) An efficient synthesis of novel spiro[benzo[c]pyrano[3,2-a]phenazines] via domino multi-component reactions using l-proline as a bifunctional organocatalyst. Tetrahedron Lett 54:2791–2794.  https://doi.org/10.1016/j.tetlet.2013.03.073 CrossRefGoogle Scholar
  42. 42.
    Chd Hurd, Bauer L (1953) Poly-2-amino-4-pentenoic acid and polytryptophan. J Org Chem 18:1440–1448.  https://doi.org/10.1021/jo50016a025 CrossRefGoogle Scholar
  43. 43.
    Mitsui Y, Tsuboi M, Iitaka Y (1969) The crystal structure of Dl-proline hydrochloride. Acta Cryst 25:2182–2192.  https://doi.org/10.1107/S0567740869005449 CrossRefGoogle Scholar
  44. 44.
    Kumari S, Singh H, Khurana JM (2016) An efficient green approach for the synthesis of novel triazolyl spirocyclic oxindole derivatives via one-pot five component protocol using DBU as catalyst in PEG-400. Tetrahedron Lett 57:3081–3085.  https://doi.org/10.1016/j.tetlet.2016.05.084(And the references therein) CrossRefGoogle Scholar
  45. 45.
    Duthaler RO (2003) Proline-catalyzed asymmetric α-amination of aldehydes and ketones: an astonishingly simple access to optically active α-hydrazino carbonyl compounds. Angew Chem Int Ed 42:975–978.  https://doi.org/10.1002/anie.200390283 CrossRefGoogle Scholar
  46. 46.
    Yavari I, Hosseini N, Moradi L (2008) Efficient synthesis of highly functionalized thiazolidine-4-ones under solvent-Free conditions. Monatsh Chem 139:133–136.  https://doi.org/10.1007/s00706-007-0751-x CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Chemistry DepartmentUniversity of GuilanRashtIran
  2. 2.Chemistry DepartmentIslamic Azad University, Rasht BranchRashtIran

Personalised recommendations