Fe3O4@C@OSO3H as an efficient, recyclable magnetic nanocatalyst in Pechmann condensation: green synthesis, characterization, and theoretical study

  • Zahra Samiei
  • Somayeh Soleimani-AmiriEmail author
  • Zahra Azizi
Original Article


Novel sulfonated carbon-coated magnetic nanoparticles (SCCMNPs; Fe3O4@C@OSO3H) were designed, synthesized, characterized, and applied as an efficient nanocatalyst for green synthesis of coumarin derivatives through Pechmann condensation. The Fe3O4@C@OSO3H was manufactured through a simple and inexpensive two-step procedure and characterized by FTIR, EDX, XRD, SEM, TEM, DLS, VSM, and TGA techniques. It was identified as an efficient heterogeneous catalyst in the Pechmann condensation of phenol derivatives and β-ketoesters, leading to high-yield coumarin derivatives under solvent-free conditions. The Fe3O4@C@OSO3H removed after reaction finishing point by an external magnet, and it was reused fifteen times at the same conditions. Besides, theoretical studies were carried out using B3LYP/6-311++G(d,p) to more consideration of the reaction mechanism. The study of the frontier molecular orbitals, NBO atomic charges, molecular electrostatic potential of reactants, as well as Pechmann condensation mechanism was known very useful in suitable reactant choice. The reaction was performed through the electrophilic attack, dehydration, and trans-esterification, respectively.

Graphic abstract


Sulfonated carbon-coated magnetic nanoparticles Heterogeneous catalyst Pechmann condensation Green synthesis Theoretical study 


Supplementary material

11030_2019_10025_MOESM1_ESM.docx (19.2 mb)
Supplementary material 1 (DOCX 19668 kb)


  1. 1.
    Ogoshi T, Kanai S, Fujinami S, Yamagishi T-A, Nakamoto Y (2008) para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc 130(15):5022–5023PubMedCrossRefGoogle Scholar
  2. 2.
    Han Z-Y, Xiao H, Chen X-H, Gong L-Z (2009) Consecutive intramolecular hydroamination/asymmetric transfer hydrogenation under relay catalysis of an achiral gold complex/chiral Brønsted acid binary system. J Am Chem Soc 131(26):9182–9183PubMedCrossRefGoogle Scholar
  3. 3.
    Muratore ME et al (2009) Enantioselective Brønsted acid-catalyzed N-acyliminium cyclization cascades. J Am Chem Soc 131(31):10796–10797PubMedCrossRefGoogle Scholar
  4. 4.
    Lee YH et al (2016) Removal of benzoic acid in heavy oils by esterification using modified ferrierite: roles of Brønsted and Lewis acid sites. Energy Fuels 30(7):5391–5397CrossRefGoogle Scholar
  5. 5.
    Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35(9):791–797PubMedCrossRefGoogle Scholar
  6. 6.
    Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35(9):686–694PubMedCrossRefGoogle Scholar
  7. 7.
    Smith K, El-Hiti GA, Jayne AJ, Butters M (2003) Acetylation of aromatic ethers using acetic anhydride over solid acid catalysts in a solvent-free system. Scope of the reaction for substituted ethers. Org Biomol Chem 1(9):1560–1564PubMedCrossRefGoogle Scholar
  8. 8.
    Hara M et al (2004) A carbon material as a strong protonic acid. Angew Chem Int Ed 43(22):2955–2958CrossRefGoogle Scholar
  9. 9.
    Melero JA, Bautista LF, Morales G, Iglesias J, Briones D (2009) Biodiesel production with heterogeneous sulfonic acid-functionalized mesostructured catalysts. Energy Fuels 23(1):539–547CrossRefGoogle Scholar
  10. 10.
    Morales G, Paniagua M, Melero JA, Vicente G, Ochoa C (2011) Sulfonic acid-functionalized catalysts for the valorization of glycerol via transesterification with methyl acetate. Ind Eng Chem Res 50(10):5898–5906CrossRefGoogle Scholar
  11. 11.
    Zareyee D, Moosavi SM, Alaminezhad A (2013) Chemoselective synthesis of geminal diacetates (acylals) using eco-friendly reusable propylsulfonic acid based nanosilica (SBA-15-Ph-PrSO3H) under solvent-free conditions. J Mol Catal A-Chem 378:227–231CrossRefGoogle Scholar
  12. 12.
    Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal 2(7):1296–1304CrossRefGoogle Scholar
  13. 13.
    Fukuhara K et al (2011) Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups. Chemsuschem 4(6):778–784PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S (2011) Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv Mater 23(29):3294–3297PubMedCrossRefGoogle Scholar
  15. 15.
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244CrossRefGoogle Scholar
  16. 16.
    Kim J et al (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689PubMedCrossRefGoogle Scholar
  17. 17.
    Abbasi Z, Rezayati S, Bagheri M, Hajinasiri R (2017) Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solvent- and halogen-free protocol for the synthesis of coumarin derivatives. Chin Chem Lett 28(1):75–82CrossRefGoogle Scholar
  18. 18.
    Ghavidel H, Mirza B, & Soleimani-Amiri S (2019) A Novel, efficient, and recoverable basic Fe3O4@C nano-catalyst for green synthesis of 4H-chromenes in water via one-pot three component reactions. Polycyclic Aromat Compd. CrossRefGoogle Scholar
  19. 19.
    Soleimani-Amiri S, Arabkhazaeli M, Hossaini Z, Afrashteh S, Eslami AA (2018) Synthesis of chromene derivatives via three-component reaction of 4-hydroxycumarin catalyzed by magnetic Fe3O4 nanoparticles in water. J Heterocycl Chem 55(1):209–213CrossRefGoogle Scholar
  20. 20.
    Keshavarz M, Zarei Ahmady A, Vaccaro L, Kardani M (2018) Non-covalent supported of l-proline on graphene oxide/Fe3O4 nanocomposite: a novel, highly efficient and superparamagnetically separable catalyst for the synthesis of bis-pyrazole derivatives. Molecules 23(2):16CrossRefGoogle Scholar
  21. 21.
    Ahmady AZ, Saghanezhad SJ, Mohtasham N (2017) Sulfuric acid functionalized magnetic nanocatalyst for one-pot green synthesis of 2,3-dihydroquinazolin-4 (1H)-ones. J Nanoanal 4(4):313–319Google Scholar
  22. 22.
    Zhang M, Liu Y-H, Shang Z-R, Hu H-C, Zhang Z-H (2017) Supported molybdenum on graphene oxide/Fe3O4: an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal Commun 88:39–44CrossRefGoogle Scholar
  23. 23.
    Chen M-N, Mo L-P, Cui Z-S, Zhang Z-H (2019) Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem 15:27–37CrossRefGoogle Scholar
  24. 24.
    Zhang M et al (2016) Magnetically separable graphene oxide anchored sulfonic acid: a novel, highly efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Adv 6(108):106160–106170CrossRefGoogle Scholar
  25. 25.
    Wang P, Kong A, Wang W, Zhu H, Shan Y (2010) Facile preparation of ionic liquid functionalized magnetic nano-solid acid catalysts for acetalization reaction. Catal Lett 135(1):159–164CrossRefGoogle Scholar
  26. 26.
    Karimi B, Mirzaei HM, Mobaraki A, Vali H (2015) Sulfonic acid-functionalized periodic mesoporous organosilicas in esterification and selective acylation reactions. Catal Sci Technol 5(7):3624–3631CrossRefGoogle Scholar
  27. 27.
    Elhamifar D, Ramazani Z, Norouzi M, Mirbagheri R (2018) Magnetic iron oxide/phenylsulfonic acid: a novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. J Colloid Interface Sci 511:392–401PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Esfahani FK, Zareyee D, Yousefi R (2014) Sulfonated core–shell magnetic nanoparticle (Fe3O4@SiO2@PrSO3H) as a highly active and durable protonic acid catalyst; synthesis of coumarin derivatives through Pechmann reaction. ChemCatChem 6(12):3333–3337CrossRefGoogle Scholar
  29. 29.
    Dumitrache F et al (2004) Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diamond Relat Mater 13(2):362–370CrossRefGoogle Scholar
  30. 30.
    Zheng J et al (2012) One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnol 23(16):165601CrossRefGoogle Scholar
  31. 31.
    Polshettiwar V et al (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075PubMedCrossRefGoogle Scholar
  32. 32.
    Naeimi H, Mohamadabadi S (2014) Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1H-tetrazoles under solvent-free conditions. Dalton Trans 43(34):12967–12973PubMedCrossRefGoogle Scholar
  33. 33.
    Mahmoudi H, Jafari AA (2013) Facial preparation of sulfonic acid-functionalized magnetite-coated maghemite as a magnetically separable catalyst for pyrrole synthesis. ChemCatChem 5(12):3743–3749CrossRefGoogle Scholar
  34. 34.
    Mobaraki A, Movassagh B, Karimi B (2014) Magnetic solid sulfonic acid decorated with hydrophobic regulators: a combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles. ACS Comb Sci 16(7):352–358PubMedCrossRefGoogle Scholar
  35. 35.
    Samadizadeh M, Nouri S, Kiani Moghadam F (2016) Magnetic nanoparticles functionalized ethane sulfonic acid (MNESA): as an efficient catalyst in the synthesis of coumarin derivatives using Pechmann condensation under mild condition. Res Chem Intermed 42(6):6089–6103CrossRefGoogle Scholar
  36. 36.
    Nasseri MA, Sadeghzadeh SM (2014) Diazabicyclo[2.2.2]octane stabilized on Fe3O4 as catalysts for synthesis of coumarin under solvent-free conditions. J Iran Chem Soc 11(1):27–33CrossRefGoogle Scholar
  37. 37.
    Fan G-j et al (2001) A novel class of inhibitors for steroid 5α-reductase: synthesis and evaluation of umbelliferone derivatives. Bioorg Med Chem Lett 11(17):2361–2363PubMedCrossRefGoogle Scholar
  38. 38.
    Wang C-J, Hsieh Y-J, Chu C-Y, Lin Y-L, Tseng T-H (2002) Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Lett 183(2):163–168PubMedCrossRefGoogle Scholar
  39. 39.
    Spino C, Dodier M, Sotheeswaran S (1998) Anti-HIV coumarins from Calophyllum seed oil. Bioorg Med Chem Lett 8(24):3475–3478PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ghosh PP, Das AR (2013) Nanocrystalline and reusable ZnO catalyst for the assembly of densely functionalized 4H-chromenes in aqueous medium via one-pot three component reactions: a greener, “NOSE” approach. J Org Chem 78(12):6170–6181PubMedCrossRefGoogle Scholar
  41. 41.
    Cravotto G, Nano GM, Palmisano G, Tagliapietra S (2001) An asymmetric approach to coumarin anticoagulants via hetero-Diels–Alder cycloaddition. Tetrahedron Asymmetry 12(5):707–709CrossRefGoogle Scholar
  42. 42.
    Sharghi H, Jokar M (2007) Al2O3/MeSO3H (AMA) as a novel heterogeneous system for synthesis of coumarins under mild conditions. Heterocycles 71(12):2721–2733CrossRefGoogle Scholar
  43. 43.
    Sharma G, Reddy JJ, Lakshmi PS, Krishna PR (2005) An efficient ZrCl4 catalyzed one-pot solvent free protocol for the synthesis of 4-substituted coumarins. Tetrahedron Lett 46(36):6119–6121CrossRefGoogle Scholar
  44. 44.
    Gu Y, Zhang J, Duan Z, Deng Y (2005) Pechmann reaction in non-chloroaluminate acidic ionic liquids under solvent-free conditions. Adv Synth Catal 347(4):512–516CrossRefGoogle Scholar
  45. 45.
    Zareyee D, Serehneh M (2014) Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through Pechmann condensation. J Mol Catal A: Chem l 391:88–91CrossRefGoogle Scholar
  46. 46.
    Prousis KC, Avlonitis N, Heropoulos GA, Calogeropoulou T (2014) FeCl3-catalysed ultrasonic-assisted, solvent-free synthesis of 4-substituted coumarins. A useful complement to the Pechmann reaction. Ultrason Sonochem 21(3):937–942PubMedCrossRefGoogle Scholar
  47. 47.
    Jafari E, Farajzadeh P, Akbari N, Karbakhshzadeh A (2019) An efficient and facile synthesis of the coumarin and ester derivatives using sulfonated polyionic liquid as a highly active heterogeneous catalyst. Chem Rev Lett 2(3):123–129Google Scholar
  48. 48.
    Ghodke S, Chudasama U (2013) Solvent free synthesis of coumarins using environment friendly solid acid catalysts. Appl Catal A 453:219–226CrossRefGoogle Scholar
  49. 49.
    Ahmed AI, El-Hakam S, Khder A, El-Yazeed WA (2013) Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4-methyl coumarin by Pechmann condensation reaction. J Mol Catal A: Chem 366:99–108CrossRefGoogle Scholar
  50. 50.
    Mokhtary M, Najafizadeh F (2012) Polyvinylpolypyrrolidone-bound boron trifluoride (PVPP-BF3); a mild and efficient catalyst for synthesis of 4-metyl coumarins via the Pechmann reaction. C R Chim 15(6):530–532CrossRefGoogle Scholar
  51. 51.
    Bouasla S et al (2017) Coumarin derivatives solvent-free synthesis under microwave irradiation over heterogeneous solid catalysts. Molecules 22(12):2072PubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tyagi B, Mishra MK, Jasra RV (2007) Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia. J Mol Catal A: Chem 276(1–2):47–56CrossRefGoogle Scholar
  53. 53.
    Daru J, Stirling A (2011) Mechanism of the Pechmann reaction: a theoretical study. J Org Chem 76(21):8749–8755PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Sethna SM, Shah NM (1945) The chemistry of coumarins. Chem Rev 36(1):1–62CrossRefGoogle Scholar
  55. 55.
    Torviso R et al (2008) Catalytic activity of Keggin heteropolycompounds in the Pechmann reaction. Appl Catal A 339(1):53–60CrossRefGoogle Scholar
  56. 56.
    Calvino-Casilda V, Bañares M, LozanoDiz E (2010) Real-time Raman monitoring during coumarins synthesis via Pechmann condensation: a tool for controlling the preparation of pharmaceuticals. Catal Today 155(3–4):279–281CrossRefGoogle Scholar
  57. 57.
    Tyndall S, Wong KF, VanAlstine-Parris MA (2015) Insight into the mechanism of the Pechmann condensation reaction using NMR. J Org Chem 80(18):8951–8953PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Pornsatitworakul S et al (2017) The coumarin synthesis: a combined experimental and theoretical study. Monatsh Chem 148(7):1245–1250CrossRefGoogle Scholar
  59. 59.
    Suh S-E, Chen S, Houk K, Chenoweth DM (2018) The mechanism of the triple aryne–tetrazine reaction cascade: theory and experiment. Chem Sci 9(39):7688–7693PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Han L, Xu B, Liu T (2018) Mechanisms of the synthesis of trialkylsubstituted alkenylboronates from unactivated internal alkynes catalyzed by copper: a theoretical study. J Organomet Chem 864:154–159CrossRefGoogle Scholar
  61. 61.
    Altass HM, Khder AERS (2018) Preparation, characterization of highly active recyclable zirconium and tin tungstate catalysts and their application in Pechmann condensation reaction. React Kinet Mech Catal 125(1):16CrossRefGoogle Scholar
  62. 62.
    Aoudjit L, Halliche D, Bachari K, Saadi A, Cherifi O (2017) Nickel-containing mesoporous silicas as a catalyst for the Pechmann condensation reaction. Theor Exp Chem 53:10CrossRefGoogle Scholar
  63. 63.
    Jadhav NH, Sakate SS, Rasal NK, Shinde, Pawar RA (2019) Heterogeneously catalyzed Pechmann condensation employing the tailored Zn0.925Ti0.075O NPs: synthesis of coumarin. ACS Omega 4(5):8522–8527PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mirosanloo A, Zareyee D, Khalilzadeh MA (2018) Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solvent-free synthesis of coumarin derivatives via von Pechmann condensation. Appl Organomet Chem 32(12):e4546CrossRefGoogle Scholar
  65. 65.
    Pakdel S, Akhlaghinia B, Mohammadinezhad A (2019) Fe3O4@boehmite-NH2-CoII NPs: an environment friendly nanocatalyst for solvent free synthesis of coumarin derivatives through Pechmann condensation reaction. Chem Afr 2(3):10Google Scholar
  66. 66.
    Sun R, Gao Y, Ma Y, Yang G, Li Y (2017) SnCl4 grafted on silica gel: an efficient catalyst for solvent-free synthesis of coumarins via the Pechmann condensation. J Iran Chem Soc 14:5CrossRefGoogle Scholar
  67. 67.
    Borah KJ, Borah R (2011) Poly(4-vinylpyridine)-supported sulfuric acid: an efficient solid acid catalyst for the synthesis of coumarin derivatives under solvent-free conditions. Monatsh Chem 142(12):1253–1257CrossRefGoogle Scholar
  68. 68.
    Keri RS, Hosamani KM, Seetharama Reddy HR (2009) A solvent-free synthesis of coumarins using phosphotungstic acid as catalyst. Catal Lett 131(1):321–327CrossRefGoogle Scholar
  69. 69.
    Reddy YT et al (2008) Ceric ammonium nitrate (CAN): an efficient catalyst for the coumarin synthesis via Pechmann condensation using conventional heating and microwave irradiation. Synth Commun 38(13):2082–2088CrossRefGoogle Scholar
  70. 70.
    Raju BC et al (2010) α-Glucosidase inhibitory antihyperglycemic activity of substituted chromenone derivatives. Bioorg Med Chem 18(1):358–365PubMedCrossRefGoogle Scholar
  71. 71.
    Gaussian 09 (2016) In: Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian (eds) Inc., Wallingford CTGoogle Scholar
  72. 72.
    Becke AD (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104(3):1040–1046CrossRefGoogle Scholar
  73. 73.
    Hehre WJ, Warren J, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, p 548Google Scholar
  74. 74.
    Foresman JB, Frisch Æ (2015) Exploring chemistry with electronic structure methods, 3rd edn. Gaussian, Inc., PittsburghGoogle Scholar
  75. 75.
    Glendening ED et al (2013) NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryIslamic Azad University, Karaj BranchKarajIran

Personalised recommendations