Advertisement

Synthesis and biological evaluation of 2-phenyl-4-aminoquinolines as potential antifungal agents

  • Rui YangEmail author
  • Wenhao Du
  • Huan Yuan
  • Tianhong Qin
  • Renxiao He
  • Yanni Ma
  • Haiying DuEmail author
Original Article
  • 46 Downloads

Abstract

A series of 2-phenyl-4-aminoquinolines were designed, synthesized and evaluated for their antifungal activities against three phytopathogenic fungi in vitro. All of the target compounds were fully elucidated by 1H NMR, 13C NMR and HRMS spectra. The results indicated that most of the target compounds demonstrated significant activities against the tested fungi. Among them, compound 6e exhibited more promising inhibitory activities against C. lunata (EC50 = 13.3 μg/mL), P. grisea (EC50 = 14.4 μg/mL) and A. alternate (EC50 = 15.6 μg/mL), superior to azoxystrobin, a commercial agricultural fungicide. The structure–activity relationship (SAR) revealed that the aniline moiety at position 4 of the quinoline scaffold played a key role in the potency of a compound. And the substitution positions of the aniline moiety significantly influenced the activities. These encouraging results yielded a variety of 2-phenylquinolines bearing an aniline moiety acting as promising antifungal agents.

Graphic abstract

Keywords

4-Aminoquinoline Phytopathogenic fungi Antifungal activity Structure–activity relationship 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 31601670) and the Foundation of Education Department of Sichuan Province (No. 18ZB0079).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11030_2019_10012_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (DOCX 4819 kb)

References

  1. 1.
    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194.  https://doi.org/10.1038/nature10947 CrossRefPubMedGoogle Scholar
  2. 2.
    Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109(9):3903–3990.  https://doi.org/10.1021/cr050001f CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang J, Peng JF, Wang T, Kang Y, Jing S, Zhang ZT (2017) Synthesis and biological evaluation of arylpyrazoles as fungicides against phytopathogenic fungi. Mol Divers 21(2):317–323.  https://doi.org/10.1007/s11030-017-9727-x CrossRefPubMedGoogle Scholar
  4. 4.
    Wang X, Fu X, Yan J, Wang A, Wang M, Chen M, Yang C, Song Y (2019) Design and synthesis of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N’-phenylacethydrazide derivatives as potential fungicides. Mol Divers 23(3):573–583.  https://doi.org/10.1007/s11030-018-9891-7 CrossRefPubMedGoogle Scholar
  5. 5.
    Karekal MR, Biradar V, Bennikallu HMM (2013) Synthesis, characterization, antimicrobial, DNA cleavage, and antioxidant studies of some metal complexes derived from schiff base containing indole and quinoline moieties. Bioinorg Chem Appl 2013:315972.  https://doi.org/10.1155/2013/315972 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Minocheherhomji FP, Vaidya KK (2016) Potential therapeutic values of quinoline derivatives based on their antibacterial activity. Int J Pharma Bio Sci 7(4):412–415.  https://doi.org/10.22376/ijpbs.2016.7.4.b412-415 CrossRefGoogle Scholar
  7. 7.
    Emami S, Ghafouri E, Faramarzi MA, Samadi N, Irannejad H, Foroumadi A (2013) Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study. Eur J Med Chem 68:185–191.  https://doi.org/10.1016/j.ejmech.2013.07.032 CrossRefPubMedGoogle Scholar
  8. 8.
    Arafa RK, Hegazy GH, Piazza GA, Abadi AH (2013) Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur J Med Chem 63:826–832.  https://doi.org/10.1016/j.ejmech.2013.03.008 CrossRefPubMedGoogle Scholar
  9. 9.
    Köprülü TK, Ökten S, Tekin Ş, Çakmak O (2019) Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J Biochem Mol Toxicol 33(3):e22260.  https://doi.org/10.1002/jbt.22260 CrossRefPubMedGoogle Scholar
  10. 10.
    Vandekerckhove S, Desmet T, Tran HG, de Kock C, Smith PJ, Chibale K, Dhooghe M (2014) Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorg Med Chem Lett 24(4):1214–1217.  https://doi.org/10.1016/j.bmcl.2013.12.067 CrossRefPubMedGoogle Scholar
  11. 11.
    Plevová K, Briestenská K, Colobert F, Mistríková J, Milata V, Leroux FR (2015) Synthesis and biological evaluation of new nucleosides derived from trifluoromethoxy-4-quinolones. Tetrahedron Lett 56(36):5112–5115.  https://doi.org/10.1016/j.tetlet.2015.07.031 CrossRefGoogle Scholar
  12. 12.
    Qu TF, Qu LL, Wang XG, Xu T, Xiao X, Ding M, Deng L, Guo Y (2017) Design, synthesis, and antibacterial activity of novel 8-methoxyquinoline-2-carboxamide compounds containing 1,3,4-thiadiazole moiety. Zeitschrift für Naturforschung C 73(3–4):117–122.  https://doi.org/10.1515/znc-2017-0063 CrossRefGoogle Scholar
  13. 13.
    Musiol R, Serda M, Hensel-Bielowka S, Polanski J (2010) Quinoline-based antifungals. Curr Med Chem 17(18):1960–1973.  https://doi.org/10.2174/092986710791163966 CrossRefPubMedGoogle Scholar
  14. 14.
    Kouznetsov VV, Meléndez Gómez CM, Derita MG, Svetaz L, del Olmo E, Zacchino SA (2012) Synthesis and antifungal activity of diverse C-2 pyridinyl and pyridinylvinyl substituted quinolines. Bioorg Med Chem 20(21):6506–6512.  https://doi.org/10.1016/j.bmc.2012.08.036 CrossRefPubMedGoogle Scholar
  15. 15.
    Yaakov DB, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N (2017) The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus. J Antimicrob Chemother 72(8):2263–2272.  https://doi.org/10.1093/jac/dkx117 CrossRefPubMedGoogle Scholar
  16. 16.
    Fang YM, Zhang RR, Shen ZH, Wu HK, Tan CX, Weng JQ, Xu TM, Liu XH (2018) Synthesis, antifungal activity, and SAR study of some new 6-perfluoropropanyl quinoline derivatives. J Heterocycl Chem 55(1):240–245.  https://doi.org/10.1002/jhet.3031 CrossRefGoogle Scholar
  17. 17.
    Rahangdale PK, Inam F, Chourasia SS (2018) Quantitative structure activity relationship and biological activity studies of 4-methyl-2-(4-substituted phenyl)quinoline derivatives. Asian J Chem 30(3):479–482.  https://doi.org/10.14233/ajchem.2018.20811 CrossRefGoogle Scholar
  18. 18.
    Banu S, Bollu R, Naseema M, Gomedhika PM, Nagarapu L, Sirisha K, Kumar CG, Gundasw SK (2018) A novel templates of piperazinyl-1,2-dihydroquinoline-3-carboxylates: synthesis, anti-microbial evaluation and molecular docking studies. Bioorg Med Chem Lett 28(7):1166–1170.  https://doi.org/10.1016/j.bmcl.2018.03.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Salve PS, Alegaon SG, Sriram D (2017) Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors. Bioorg Med Chem Lett 27(8):1859–1866.  https://doi.org/10.1016/j.bmcl.2017.02.031 CrossRefPubMedGoogle Scholar
  20. 20.
    Vausselin T, Seron K, Lavie M, Mesalam AA, Lemasson M, Belouzard S, Feneant L, Danneels A, Rouille Y, Cocquerel L, Foquet L, Rosenberg AR, Wychowski C, Meuleman P, Melnyk P, Dubuisson J (2016) Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J Virol 90(19):8422–8434.  https://doi.org/10.1128/JVI.00404-16 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Das P, Deng X, Zhang L, Roth MG, Fontoura BMA, Phillips MA, De Brabander JK (2013) SAR-based optimization of a 4-quinoline carboxylic acid analogue with potent antiviral activity. ACS Med Chem Lett 4(6):517–521.  https://doi.org/10.1021/ml300464h CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Singh K, Kaur H, Chibale K, Balzarini J (2013) Synthesis of 4-aminoquinoline–pyrimidine hybrids as potent antimalarials and their mode of action studies. Eur J Med Chem 66:314–323.  https://doi.org/10.1016/j.ejmech.2013.05.046 CrossRefPubMedGoogle Scholar
  23. 23.
    Bhat HR, Singh UP, Gahtori P, Ghosh SK, Gogoi K, Prakash A, Singh RK (2013) 4-Aminoquinoline-1,3,5-triazine: design, synthesis, in vitro antimalarial activity and docking studies. New J Chem 37(9):2654–2662.  https://doi.org/10.1039/c3nj00317e CrossRefGoogle Scholar
  24. 24.
    Marvania B, Kakadiya R, Christian W, Chen TL, Wu MH, Suman S, Tala K, Lee TC, Shah A, Su TL (2014) The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker. Eur J Med Chem 83:695–708.  https://doi.org/10.1016/j.ejmech.2014.06.066 CrossRefPubMedGoogle Scholar
  25. 25.
    Abbas SH, Abd El-Hafeez AA, Shoman ME, Montano MM, Hassan HA (2019) New quinoline/chalcone hybrids as anti-cancer agents: design, synthesis, and evaluations of cytotoxicity and PI3 K inhibitory activity. Bioorg Chem 82:360–377.  https://doi.org/10.1016/j.bioorg.2018.10.064 CrossRefPubMedGoogle Scholar
  26. 26.
    Meléndez Gómez CM, Kouznetsov VV, Sortino MA, Álvarez SL, Zacchino SA (2008) In vitro antifungal activity of polyfunctionalized 2-(hetero)arylquinolines prepared through imino Diels-Alder reactions. Bioorg Med Chem 16(17):7908–7920.  https://doi.org/10.1016/j.bmc.2008.07.079 CrossRefPubMedGoogle Scholar
  27. 27.
    Liberto NA, Simoes JB, Silva SdP, da Silva CJ, Modolo LV, de Fatima A, Silva LM, Derita M, Zacchino S, Zuniga OMP, Romanelli GP, Fernandes SA (2017) Quinolines: microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties. Bioorg Med Chem 25(3):1153–1162.  https://doi.org/10.1016/j.bmc.2016.12.023 CrossRefPubMedGoogle Scholar
  28. 28.
    Mudaliar S, Chikhalia KH, Shah NK (2016) Synthesis of 2-, 3- or 4-phenylsubtituted chalcones based on 4-phenylamino-6-nitro-2-[(E)-2-phenylvinyl]quinoline, evaluation of their antimicrobial and antifungal activity. Lett Drug Des Discovery 13(8):818–823.  https://doi.org/10.2174/1570180812666151016205033 CrossRefGoogle Scholar
  29. 29.
    Montoya A, Quiroga J, Abonia R, Derita M, Sortino M, Ornelas A, Zacchino S, Insuasty B (2016) Hybrid molecules containing a 7-chloro-4-aminoquinoline nucleus and a substituted 2-pyrazoline with antiproliferative and antifungal activity. Molecules 21(8):969/1–969/19.  https://doi.org/10.3390/molecules21080969 CrossRefGoogle Scholar
  30. 30.
    Yang R, Ma YN, Huang T, Xie W, Zhang X, Huang GS, Liu XD (2018) Synthesis and antifungal activities of 4-thioquinoline compounds. Chin J Org Chem 38(8):2143–2150.  https://doi.org/10.6023/cjoc201801024 CrossRefGoogle Scholar
  31. 31.
    Tsai JY, Chang CS, Huang YF, Chen HS, Lin SK, Wong FF, Huang LJ, Kuo SC (2008) Investigation of amination in 4-chloro-2-phenylquinoline derivatives with amide solvents. Tetrahedron 64(51):11751–11755.  https://doi.org/10.1016/j.tet.2008.09.100 CrossRefGoogle Scholar
  32. 32.
    Pickard AJ, Liu F, Bartenstein TF, Haines LG, Levine KE, Kucera GL, Bierbach U (2014) Redesigning the DNA-targeted chromophore in platinum-acridine anticancer agents: a structure-activity relationship study. Chemistry 20(49):16174–16187.  https://doi.org/10.1002/chem.201404845 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang R, Gao ZF, Zhao JY, Li WB, Zhou L, Miao F (2015) New class of 2-aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection: synthesis, bioactivity and structure-activity relationships. J Agric Food Chem 63(7):1906–1914.  https://doi.org/10.1021/jf505609z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Materials, Chemistry & Chemical EngineeringChengdu University of TechnologyChengduPeople’s Republic of China
  2. 2.Key Laboratory of Natural ProductsHenan Academy of SciencesZhengzhouPeople’s Republic of China
  3. 3.College of EnvironmentChengdu University of TechnologyChengduPeople’s Republic of China

Personalised recommendations