Advertisement

Structure elaboration of isoniazid: synthesis, in silico molecular docking and antimycobacterial activity of isoniazid–pyrimidine conjugates

  • Hardeep Kaur
  • Lovepreet Singh
  • Kelly Chibale
  • Kamaljit SinghEmail author
Original Article

Abstract

Designing small molecule-based new drug candidates through structure modulation of the existing drugs has drawn considerable attention in view of inevitable emergence of resistance. A new series of isoniazid–pyrimidine conjugates were synthesized in good yields and evaluated for antitubercular activity against the H37Rv strain of Mycobacterium tuberculosis using the microplate Alamar Blue assay. Structure–anti-TB relationship profile revealed that conjugates 8a and 8c bearing a phenyl group at C-6 of pyrimidine scaffold were most active (MIC99 10 µM) and least cytotoxic members of the series. In silico docking of 8a in the active site of bovine lactoperoxidase as well as a cytochrome C peroxidase mutant N184R Y36A revealed favorable interactions similar to the heme enzyme catalase peroxidase (KatG) that activates isoniazid. This investigation suggests a rationale for further work on this promising series of antitubercular agents.

Graphic abstract

Keywords

Isoniazid Pyrimidine Conjugates Tuberculosis Drug resistance Molecular docking ADME 

Abbreviations

MABA

Microplate Alamar Blue assay

WHO

World Health Organization

SDG

Sustainable development goals

INH

Isoniazid

RIF

Rifampicin

PZA

Pyrazinamide

EMB

Ethambutol

PPE

Polyphosphate ester

KatG

Heme (ferric) enzyme catalase peroxidase

MTT

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide

InhA

2-trans-enoyl-acyl carrier protein reductase

ADME

Adsorption, distribution, metabolism, excretion

Notes

Acknowledgements

We gratefully acknowledge financial assistance from CSIR, New Delhi (Project 02(0268)/16/EMR-II). We also thank Ronnett Seldon and Dale Taylor for antimycobacterial and cytotoxicity screening, respectively. KS thanks Schrodinger, India, for complimentary license.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Supplementary material

11030_2019_10004_MOESM1_ESM.docx (3.9 mb)
Full experimental details (including 1HNMR/13CNMR/MS spectra, etc.) for the synthesized compounds, synthetic procedures and procedures for in vitro antitubercular assay, cytotoxicity and antiviral assay. Table S1 for ADME predictions (PDF). (DOCX 4021 kb)

References

  1. 1.
    Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014:541340CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Monge-Maillo B, Lopez-Velez R, Norman FF, Ferrere-Gonzalez F, Martınez-Perez A, Perez-Molina JA (2015) Screening of imported infectious diseases among asymptomatic sub-Saharan African and Latin American immigrants: a public health challenge. Am J Trop Med Hyg 92:848–856CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sakamoto K (2012) The pathology of Mycobacterium tuberculosis infection. Vet Pathol 49:423–439CrossRefGoogle Scholar
  4. 4.
    Russel DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577CrossRefGoogle Scholar
  5. 5.
    Global Tuberculosis report 2018, WHOGoogle Scholar
  6. 6.
    Uplekar M, Weil D, Lonnroth K, Jaramillo E, Lienhardt C, Dias HM, Falzon D, Floyd K, Gargioni G, Getahun H, Gilpin C, Glaziou P, Grzemska M, Mirzayev F, Nakatani H, Raviglione M (2015) WHO’s new end TB strategy. Lancet 385:1799–1801CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lonnarth K, Raviglione M (2016) The WHO’s new end TB strategy in the post-2015 era of the sustainable development goals. Trans R Soc Trop Med Hyg 110:148–150CrossRefGoogle Scholar
  8. 8.
    Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58CrossRefGoogle Scholar
  9. 9.
    Knowles DJ (1997) New strategies for antibacterial drug design. Trends Microbiol 5:379CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Broach JR, Thorner J (1996) High-throughput screening for drug discovery. Nature 384:14–16CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gualano G, Capone S, Mattelli A, Palmien F (2016) New antituberculosis drugs: from clinical trial to programmatic use. Infect Dis Rep 8:6569CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zumla A, Chakaya J, Centis R, D’Ambrosio L, Mwaba P, Bates M, Kapata N, Nyirenda T, Chanda D, Mfinanga S, Hoelscher M, Maeurer M, Migliori GB (2015) Tuberculosis treatment and management–an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med 3:220–234CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Meunier B (2008) Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res 41:69–77CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Muregi FW, Ishih A (2010) Next-generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res 71:20–32PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bass Jr JB, Farer LS, Hopewell PC, O’Brien R, Jacobs RF, Ruben F, Snider Jr DE, Thornton GS (1994) Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention. Am J Respir Crit Care Med 149:1359–1374CrossRefGoogle Scholar
  16. 16.
    Srivastava S, Pasipanodya J, Meek C, Leff R, Gumbo T (2011) Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis 204:1951–1959CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Singh M, Sasi P, Rai G, Gupta VH, Amarapurkar D, Wangikar PP (2011) Studies on toxicity of antitubercular drugs namely isoniazid, rifampicin, and pyrazinamide in an in vitro model of HepG2 cell line. Med Chem Res 20:1611–1615CrossRefGoogle Scholar
  18. 18.
    Hu Y-Q, Zhang S, Zhao F, Gao C, Feng L-S, Lv Z-S, Xu Z, Wu X (2017) Isoniazid derivatives and their anti-tubercular activity. Eur J Med Chem 133:255–267CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tripathi M, Taylor D, Khan SI, Tekwani BL, Ponnan P, Das US, Velpandian T, Rawat DS (2019) Hybridization of fluoro-amodiaquine (FAQ) with pyrimidines: synthesis and antimalarial efficacy of FAQ-pyrimidines. ACS Med Chem Lett 10:714–719CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Singh K, Kaur T (2016) Pyrimidine-based antimalarials: design strategies and antiplasmodial effects. Med Chem Commun 7:749–768CrossRefGoogle Scholar
  21. 21.
    Kaur H, Chibale K, Smith P, de Kock C, Singh K (2015) Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur J Med Chem 101:52–62CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kaur H, Machado M, Chibale K, Prudêncio M, Singh K (2015) Primaquine–pyrimidine hybrids: synthesis and dual-stage antiplasmodial activity. Eur J Med Chem 101:266–273CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Singh K, Kaur H, Smith P, de Kock C, Chibale K, Balzarini J (2014) Quinoline-pyrimidine hybrids: synthesis, antiplasmodial activity, SAR, and mode of action studies. J Med Chem 57:435–448CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Romeo R, Iannazzo D, Veltri L, Gabriele B, Macchi B, Frezza C, Merlo FM, Giofre SV (2019) Pyrimidine 2,4-diones in the design of new HIV RT inhibitors. Molecules 24:1718CrossRefGoogle Scholar
  25. 25.
    Okazaki S, Mizuhara T, Shimura K, Murayama H, Ohno H, Oishi S, Matsuoka M, Fujii N (2015) Identification of anti-HIV agents with a novel benzo[4,5]isothiazolo[2,3-a]pyrimidine scaffold. Bioorg Med Chem 23:1447–1452CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Varano F, Catarzi D, Vincenzi F, Betti M, Falsini M, Ravani A, Borea PA, Colotta V, Varani K (2016) Design, synthesis, and pharmacological characterization of 2-(2-Furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine derivatives: new highly potent A2A adenosine receptor inverse agonists with antinociceptive activity. J Med Chem 59:10564–10576CrossRefGoogle Scholar
  27. 27.
    Bookser BC, Ugarkar BG, Matelich MC, Lemus RH, Allan M, Tsuchiya M, Nakane M, Nagahisa A, Wiesner JB, Erion MD (2005) Adenosine kinase inhibitors. 6. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-β-d-ribofuranosyl)pyrrolo[2,3-d]pyrimidines substituted at C4 with glycinamides and related compounds. J Med Chem 48:7808–7820CrossRefGoogle Scholar
  28. 28.
    Wu W, Chen M, Wang R, Tu H, Yang M, Ouyang G (2019) Novel pyrimidine derivatives containing an amide moiety: design, synthesis, and antifungal activity. Chem Pap 73:719–729CrossRefGoogle Scholar
  29. 29.
    Maddila S, Gorle S, Seshadri N, Lavanya P, Jonnalagadda SB (2016) Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arab J Chem 9:681–687CrossRefGoogle Scholar
  30. 30.
    Ma Z, Gao G, Fang K, Sun H (2019) Development of novel anticancer agents with a scaffold of tetrahydropyrido[4,3-d]pyrimidine-2,4-dione. ACS Med Chem Lett 10:191–195CrossRefGoogle Scholar
  31. 31.
    Gokhale N, Dalimba U, Kums M (2017) Facile synthesis of indole-pyrimidine hybrids and evaluation of their anticancer and antimicrobial activity. J Saudi Chem Soc 21:761–775CrossRefGoogle Scholar
  32. 32.
    Liu P, Yang Y, Tang Y, Yang T, Liu Z, Zhang T, Luo Y (2019) Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur J Med Chem 163:169–182CrossRefGoogle Scholar
  33. 33.
    Ke S, Shi L, Zhang Z, Yang Z (2017) Steroidal[17,16-d]pyrimidines derived from dehydroepiandrosterone: a convenient synthesis, antiproliferation activity, structure-activity relationships, and role of heterocyclic moiety. Sci Rep 7:44439CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Singh K, Singh K, Wan B, Franzblau S, Chibale K, Balzarini J (2011) Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity. Eur J Med Chem 46:2290–2294CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vekariya MK, Vekariya RH, Patel KD, Raval NP, Shah PU, Rajani DP, Shah NK (2018) Pyrimidine‐pyrazole hybrids as morpholinopyrimidine‐based pyrazole carboxamides: synthesis, characterisation, docking, ADMET study and biological evaluation. ChemistrySelect 3:6998–7008CrossRefGoogle Scholar
  36. 36.
    Chatterji M, Shandil R, Manjunatha MR, Solapure S, Ramachandran V, Kumar N, Saralaya R, Panduga V, Reddy J, Prabhakar KR, Sharma S, Sadler C, Cooper CB, Mdluli K, Iyer PS, Narayanan S, Shirude PS (2014) 1, 4-Azaindole, a potential drug candidate for treatment of tuberculosis. Antimicrob Agents Chemother 58:5325–5331CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Biginelli P, Gazz P (1893) Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones. Chim Ital 23:360–416Google Scholar
  38. 38.
    Singh K (2012) Biginelli condensation: synthesis and structure diversification of 3,4-dihydropyrimidin-2(1H)-one derivatives. In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol 105. Academic Press, Cambridge, pp 223–308Google Scholar
  39. 39.
    Kappe CO (2003) The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry. QSAR Comb Sci 22:630–645CrossRefGoogle Scholar
  40. 40.
    Falsone FS, Kappe CO (2001) The Biginelli dihydropyrimidone synthesis using polyphosphate ester as a mild and efficient cyclocondensation/dehydration reagent. Arkivoc 2:122–134Google Scholar
  41. 41.
    Shaabani A, Bazgir A, Teimouri F (2003) Ammonium chloride-catalyzed one-pot synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Tetrahedron Lett 44:857–859CrossRefGoogle Scholar
  42. 42.
    Strohmeier GA, Kappe CO (2002) Rapid parallel synthesis of polymer-bound enones utilizing microwave-assisted solid-phase chemistry. J Comb Chem 4:154–161CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Puchala A, Belaj F, Bergman J, Kappe CO (2001) On the reaction of 3,4-dihydropyrimidones with nitric acid. Preparation and x–ray structure analysis of a stable nitrolic acid. J Heterocycl Chem 38:1345–1352CrossRefGoogle Scholar
  44. 44.
    Metcalfe C, Macdonald IK, Murphy EJ, Brown KA, Raven EL, Moody PCE (2008) The tuberculosis prodrug isoniazid bound to activating peroxidases. J Biol Chem 283:6193–6200CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Singh AK, Kumar RP, Pandey N, Singh N, Sinha M, Bhushan A, Kaur P, Sharma S, Singh TP (2010) Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 A resolution. J Biol Chem 285:1569–1576CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, UGC Centre of Advance Study-IIGuru Nanak Dev UniversityAmritsarIndia
  2. 2.South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations