Advertisement

Coumarins: antifungal effectiveness and future therapeutic scope

  • Jyoti Sankar Prusty
  • Awanish KumarEmail author
Comprehensive review
  • 41 Downloads

Abstract

The antifungals that are in current clinical practice have a high occurrence of a side effect and multidrug resistance (MDR). Researchers across the globe are trying to develop a suitable antifungal that has minimum side effect as well as no MDR issues. Due to serious undesired effects connected with individual antifungals, it is now necessary to introduce novel and effective drugs having numerous potentials to regulate complex therapeutic targets of several fungal infections simultaneously. Thus, by taking a lead from this subject, synthesis of potent antifungals from coumarin moiety could contribute to the development of promising antifungal. Its resemblance and structural diversity make it possible to produce an auspicious antifungal candidate. Due to the natural origin of coumarin, its presence in diversity, and their broad spectrum of pharmacological activities, it secures an important place for the researcher to investigate and develop it as a promising antifungal in future. This manuscript discusses the bioavailability of coumarin (natural secondary metabolic molecule) that has privileged scaffold for many mycologists to develop it as a broad-spectrum antifungal against several opportunistic mycoses. As a result, several different kinds of coumarin derivatives were synthesized and their antifungal properties were evaluated. This review compiles various coumarin derivatives broadly investigated for antifungal activities to understand its current status and future therapeutic scope in antifungal therapy.

Graphic abstract

Keywords

Coumarin Structural diversity Bioactivity Promising antifungal 

Notes

Acknowledgements

This work was supported by the Department of Biotechnology (DBT, Government of India) through Project No. BT/IN/Indo-US/Foldscope/39/2015, and JSP received a fellowship from DBT, Government of India. The authors are grateful to the National Institute of Technology (NIT), Raipur (CG), India, for providing the space and facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ji Q, Ge Z, Ge Z, Chen K, Wu H, Liu X, Huang Y, Yuan L, Yang X, Liao F (2016) Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 108:166–176.  https://doi.org/10.1016/j.ejmech.2015.11.027 CrossRefPubMedGoogle Scholar
  2. 2.
    Gulcin I, Tel AZ, Kirecci E (2008) Antioxidant, antimicrobial, antifungal, and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int J Food Prop 11:450–471.  https://doi.org/10.1080/10942910701567364 CrossRefGoogle Scholar
  3. 3.
    Gülçın İ, Oktay M, Kıreçcı E, Küfrevıoǧlu Öİ (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382.  https://doi.org/10.1016/S0308-8146(03)00098-0 CrossRefGoogle Scholar
  4. 4.
    Gülçin I, Küfrevioǧlu Öİ, Oktay M, Büyükokuroǧlu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215.  https://doi.org/10.1016/j.jep.2003.09.028 CrossRefPubMedGoogle Scholar
  5. 5.
    Köhler JR, Casadevall A, Perfect J (2015) The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 5:a019273.  https://doi.org/10.1101/cshperspect.a019273 CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bruneton J (1995) Pharmacognosy, phytochemistry, medicinal plants. Lavoisier Publishing, ParisGoogle Scholar
  7. 7.
    Iranshahi M, Askari M, Sahebkar A, Adjipavlou-Litina D (2009) Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. Daru J Pharma Sci 17:99–103Google Scholar
  8. 8.
    Kontogiorgis C, Detsi A, Hadjipavlou-Litina D (2012) Coumarin-based drugs: a patent review (2008-present). Expert Opin Ther Pat 22:437–454.  https://doi.org/10.1517/13543776.2012.678835 CrossRefPubMedGoogle Scholar
  9. 9.
    Lake BG, Grasso P (1996) Comparison of the hepatotoxicity of coumarin in the rat, mouse, and Syrian hamster: a dose and time response study. Fundam Appl Toxicol 34:105–117.  https://doi.org/10.1006/faat.1996.0181 CrossRefPubMedGoogle Scholar
  10. 10.
    Soine TO (1964) Naturally occurring coumarins and related physiological activities. J Pharm Sci 53:231–264.  https://doi.org/10.1002/jps.2600530302 CrossRefPubMedGoogle Scholar
  11. 11.
    Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12:887–916.  https://doi.org/10.2174/0929867053507315 CrossRefPubMedGoogle Scholar
  12. 12.
    Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10:3813–3833.  https://doi.org/10.2174/1381612043382710 CrossRefPubMedGoogle Scholar
  13. 13.
    Egan D, O’kennedy R, Moran E, Cox D, Prosser E, Thornes RD (1990) The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab Rev.  https://doi.org/10.3109/03602539008991449 CrossRefPubMedGoogle Scholar
  14. 14.
    Dini A, Ramundo E, Saturnino P, Scimone A, Stagno IdA (1992) Isolation, characterization and antimicrobial activity of coumarin derivatives from Cyperus incompletus. Boll Soc Ital Biol Sper 68:453–461PubMedGoogle Scholar
  15. 15.
    Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv113–165rv113.  https://doi.org/10.1126/scitranslmed.3004404 CrossRefGoogle Scholar
  16. 16.
    O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550.  https://doi.org/10.1128/AEM.71.9.5544-5550.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Köhler J, Casadevall A, Perfect J (2014) The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 5:a019273.  https://doi.org/10.1101/cshperspect.a019273 CrossRefPubMedGoogle Scholar
  18. 18.
    Reedy JL, Bastidas RJ, Heitman J (2007) The virulence of human pathogenic fungi: notes from the south of France. Cell Host Microbe 2:77–83.  https://doi.org/10.1016/j.chom.2007.07.004 CrossRefPubMedGoogle Scholar
  19. 19.
    Sganga G (2011) Fungal infections in immunocompromised patients. Mycoses 54:1.  https://doi.org/10.1111/j.1439-0507.2011.02134.x CrossRefPubMedGoogle Scholar
  20. 20.
    Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698.  https://doi.org/10.1016/j.bmc.2012.04.045 CrossRefPubMedGoogle Scholar
  21. 21.
    Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788.  https://doi.org/10.1038/nrmicro1978 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773.  https://doi.org/10.1126/science.1195568 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Seebacher C, Bouchara J-P, Mignon B (2008) Updates on the epidemiology of dermatophyte infections. Mycopathologia 166:335–352.  https://doi.org/10.1007/s11046-008-9100-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192.  https://doi.org/10.1126/science.1171700 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jahns AC, Alexeyev OA (2014) Three dimensional distribution of Propionibacterium acnes biofilms in human skin. Exp Dermatol 23:687–689.  https://doi.org/10.1111/exd.12482 CrossRefPubMedGoogle Scholar
  26. 26.
    Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51:2–15.  https://doi.org/10.1111/j.1439-0507.2008.01606.x CrossRefPubMedGoogle Scholar
  27. 27.
    Otto M (2009) Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7:555–567.  https://doi.org/10.1038/nrmicro2182 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ibrahim F, Khan T, Pujalte GG (2015) Bacterial skin infections. Prim Care 42:485–499.  https://doi.org/10.1016/j.pop.2015.08.001 CrossRefPubMedGoogle Scholar
  29. 29.
    Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, Sequencing NISCC (2013) Topographic diversity of fungal and bacterial communities in human skin. Nat 498:367–370.  https://doi.org/10.1038/nature12171 CrossRefGoogle Scholar
  30. 30.
    Mohandas V, Ballal M (2011) Distribution of Candida species in different clinical samples and their virulence: biofilm formation, proteinase and phospholipase production: a study on hospitalized patients in southern India. J Glob Infect Dis 3:4–8.  https://doi.org/10.4103/0974-777x.77288 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kashem SW, Kaplan DH (2016) Skin immunity to Candida albicans. Trends Immunol 37:440–450.  https://doi.org/10.1016/j.it.2016.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nema H, Ahuja O, Bal A, Mohapatra L (1966) Mycotic flora of the conjunctiva. Am J Ophthalmol 62:968–970.  https://doi.org/10.1016/0002-9394(66)91928-3 CrossRefPubMedGoogle Scholar
  33. 33.
    Yu H (1965) Studies on fungi of the normal skin. Hifuka Kiyo 60:126–174PubMedGoogle Scholar
  34. 34.
    Vennewald I, Wollina U (2005) Cutaneous infections due to opportunistic molds: uncommon presentations. Clin Dermatol 23:565–571.  https://doi.org/10.1016/j.clindermatol.2005.01.003 CrossRefPubMedGoogle Scholar
  35. 35.
    Baley JE, Kliegman RM, Boxerbaum B, Fanaroft AA (1986) Fungal colonization in the very low birth weight infant. Pediatrics 78:225–232PubMedGoogle Scholar
  36. 36.
    Huang YC, Li CC, Lin TY, Lien RI, Chou YH, Wu JL, Hsueh C (1998) Association of fungal colonization and invasive disease in very low birth weight infants. Pediatr Infect Dis J 17:819–822.  https://doi.org/10.1097/00006454-199809000-00014 CrossRefPubMedGoogle Scholar
  37. 37.
    El-Mohandes AE, Johnson-Robbins L, Keiser JF, Simmens SJ, Aure MV (1994) Incidence of Candida parapsilosis colonization in an intensive care nursery population and its association with invasive fungal disease. Pediatr Infect Dis J 13:520–524.  https://doi.org/10.1097/00006454-199406000-00011 CrossRefPubMedGoogle Scholar
  38. 38.
    Roilides E, Farmaki E, Evdoridou J, Francesconi A, Kasai M, Filioti J, Tsivitanidou M, Sofianou D, Kremenopoulos G, Walsh TJ (2003) Candida tropicalis in a neonatal intensive care unit: epidemiologic and molecular analysis of an outbreak of infection with an uncommon neonatal pathogen. J Clin Microbiol 41:735–741.  https://doi.org/10.1128/jcm.41.2.735-741.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Brown GD, Denning DW, Levitz SM (2012) Tackling human fungal infections. Am Assoc Adv Sci 336:647.  https://doi.org/10.1126/science.1222236 CrossRefGoogle Scholar
  40. 40.
    Kirkpatrick CH (1994) Chronic mucocutaneous candidiasis. J Am Acad Dermatol 31:14–17.  https://doi.org/10.1016/S0190-9622(08)81260-1 CrossRefGoogle Scholar
  41. 41.
    Johnson RA (2000) HIV disease: mucocutaneous fungal infections in HIV disease. Clin Dermatol 18:411–422.  https://doi.org/10.1016/s0738-081x(99)00136-4 CrossRefPubMedGoogle Scholar
  42. 42.
    Richardson J, Ho J, Naglik J (2018) Candida–Epithelial interactions. J Fungi 4:22.  https://doi.org/10.3390/jof4010022 CrossRefGoogle Scholar
  43. 43.
    Goughenour KD, Rappleye CA (2017) Antifungal therapeutics for dimorphic fungal pathogens. Virulence 8:211–221.  https://doi.org/10.1080/21505594.2016.1235653 CrossRefPubMedGoogle Scholar
  44. 44.
    Sullivan DJ, Moran GP (2014) Human pathogenic fungi: molecular biology and pathogenic mechanisms. Caister Academic Press, PooleGoogle Scholar
  45. 45.
    Supparatpinyo K, Khamwan C, Baosoung V, Sirisanthana T, Nelson K (1994) Disseminated Penicillium marneffei infection in southeast Asia. Lancet 344:110–113.  https://doi.org/10.1016/S0140-6736(94)91287-4 CrossRefPubMedGoogle Scholar
  46. 46.
    Garibotto FM, Garro AD, Masman MF, Rodríguez AM, Luiten PG, Raimondi M, Zacchino SA, Somlai C, Penke B, Enriz RD (2010) New small-size peptides possessing antifungal activity. Bioorg Med Chem 18:158–167.  https://doi.org/10.1016/j.bmc.2009.11.009 CrossRefPubMedGoogle Scholar
  47. 47.
    Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21.  https://doi.org/10.1186/1471-2334-6-21 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cramer RA, Perfect JR (2009) Recent advances in understanding human opportunistic fungal pethogenesis mechanisms. In: Anaissie EJ, McGinnis MR, Pfaller MA (eds) Clinical mycology, 2nd edn. Churchill Livingstone, Edinburg, pp 15–31.  https://doi.org/10.1016/B978-1-4160-5680-5.00002-5 CrossRefGoogle Scholar
  49. 49.
    Casadevall A (2007) Determinants of virulence in the pathogenic fungi. Fungal Biol Rev 21:130–132.  https://doi.org/10.1016/j.fbr.2007.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335.  https://doi.org/10.1016/S0966-842X(01)02094-7 CrossRefPubMedGoogle Scholar
  51. 51.
    Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128.  https://doi.org/10.4161/viru.22913 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mendes-Giannini MJS, Soares CP, da Silva JLM, Andreotti PF (2005) Interaction of pathogenic fungi with host cells: molecular and cellular approaches. FEMS Immunol Med Microbiol 45:383–394.  https://doi.org/10.1016/j.femsim.2005.05.014 CrossRefPubMedGoogle Scholar
  53. 53.
    Khan MSA, Ahmad I, Aqil F, Owais M, Shahid M, Musarrat J (2010) Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans. Combat Fungal Infect.  https://doi.org/10.1007/978-3-642-12173-9_2 CrossRefGoogle Scholar
  54. 54.
    Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362.  https://doi.org/10.1099/mic.0.25932-0 CrossRefPubMedGoogle Scholar
  55. 55.
    Kabir MA, Hussain MA, Ahmad Z (2012) Candida albicans: a model organism for studying fungal pathogens. ISRN Microbiol.  https://doi.org/10.5402/2012/538694 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kumamoto CA (2008) Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol 6:667–673.  https://doi.org/10.1038/nrmicro1960 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Davis D (2003) Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44:1–7.  https://doi.org/10.1007/s00294-003-0415-2 CrossRefPubMedGoogle Scholar
  58. 58.
    Danhof HA, Vylkova S, Vesely EM, Ford AE, Gonzalez-Garay M, Lorenz MC (2016) Robust extracellular pH modulation by Candida albicans during growth in carboxylic acids. MBio 7:e01646-01616.  https://doi.org/10.1128/mBio.01646-16 CrossRefGoogle Scholar
  59. 59.
    Mendes-Giannini MJS, Taylor M, Bouchara J, Burger E, Calich V, Escalante E, Hanna S, Lenzi H, Machado M, Miyaji M (2000) Pathogenesis II: fungal responses to host responses: interaction of host cells with fungi. Med Mycol 38:113–123.  https://doi.org/10.1080/mmy.38.s1.113.123 CrossRefPubMedGoogle Scholar
  60. 60.
    Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169PubMedPubMedCentralGoogle Scholar
  61. 61.
    Tsarfaty I, Sandovsky-Losica H, Mittelman L, Berdicevsky I, Segal E (2000) Cellular actin is affected by interaction with Candida albicans. FEMS Microbiol Lett 189:225–232.  https://doi.org/10.1111/j.1574-6968.2000.tb09235.x CrossRefPubMedGoogle Scholar
  62. 62.
    Wasylnka JA, Moore MM (2002) Uptake of Aspergillus fumigatus conidia by phagocytic and nonphagocytic cells in vitro: quantitation using strains expressing green fluorescent protein. Infect Immun 70:3156–3163.  https://doi.org/10.1128/IAI.70.6.3156-3163.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mendes-Giannini MJS, Hanna SA, da Silva JLM, Andreotti PF, Vincenzi LR, Benard G, Lenzi HL, Soares CP (2004) Invasion of epithelial mammalian cells by Paracoccidioides brasiliensis leads to cytoskeletal rearrangement and apoptosis of the host cell. Microbes Infect 6:882–891.  https://doi.org/10.1016/j.micinf.2004.05.005 CrossRefPubMedGoogle Scholar
  64. 64.
    Sheppard DC, Filler SG (2015) Host cell invasion by medically important fungi. Cold Spring Harb Perspect Med 5:a019687.  https://doi.org/10.1101/cshperspect.a019687 CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Dalle F, Wächtler B, L’ollivier C, Holland G, Bannert N, Wilson D, Labruère C, Bonnin A, Hube B (2010) Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 12:248–271.  https://doi.org/10.1111/j.1462-5822.2009.01394.x CrossRefPubMedGoogle Scholar
  66. 66.
    McKenzie C, Koser U, Lewis L, Bain J, Mora-Montes H, Barker R, Gow N, Erwig L (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78:1650–1658.  https://doi.org/10.1128/IAI.00001-10 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087.  https://doi.org/10.1128/EC.3.5.1076-1087.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr, Filler SG (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64.  https://doi.org/10.1371/journal.pbio.0050064 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, Edwards JE, Filler SG (2005) Role of the fungal Rasprotein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol 7:499–510.  https://doi.org/10.1111/j.1462-5822.2004.00476.x CrossRefPubMedGoogle Scholar
  70. 70.
    Feldmesser M, Tucker S, Casadevall A (2001) Intracellular parasitism of macrophages by Cryptococcus neoformans. Trends Microbiol 9:273–278.  https://doi.org/10.1016/S0966-842X(01)02035-2 CrossRefPubMedGoogle Scholar
  71. 71.
    Nicola AM, Robertson EJ, Albuquerque P, da Silveira Derengowski L, Casadevall A (2011) Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. MBio 2:e00167-00111.  https://doi.org/10.1128/mBio.00167-11 CrossRefGoogle Scholar
  72. 72.
    Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79.  https://doi.org/10.1128/CMR.12.1.40 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Fromtling RA (1988) Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1:187–217.  https://doi.org/10.1128/CMR.1.2.187 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Turkan F, Cetin A, Taslimi P, Gulçin İ (2018) Some pyrazoles derivatives: potent carbonic anhydrase, α-glycosidase, and cholinesterase enzymes inhibitors. Arch Pharma 351:1800200.  https://doi.org/10.1002/ardp.201800200 CrossRefGoogle Scholar
  75. 75.
    Turkan F, Cetin A, Taslimi P, Karaman M, Gulçin İ (2019) Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem 86:420–427.  https://doi.org/10.1016/j.bioorg.2019.02.013 CrossRefPubMedGoogle Scholar
  76. 76.
    Güzel E, Koçyiğit ÜM, Arslan BS, Ataş M, Taslimi P, Gökalp F, Nebioğlu M, Şişman İ, Gulçin İ (2019) Aminopyrazole-substituted metallophthalocyanines: preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Arch Pharm 352:1800292.  https://doi.org/10.1002/ardp.201800292 CrossRefGoogle Scholar
  77. 77.
    Kuzu B, Tan M, Taslimi P, Gülçin İ, Taşpınar M, Menges N (2019) Mono- or di-substituted imidazole derivatives for inhibition of acetylcholine and butyrylcholine esterases. Bioorg Chem 86:187–196.  https://doi.org/10.1016/j.bioorg.2019.01.044 CrossRefPubMedGoogle Scholar
  78. 78.
    Ujjinamatada RK, Baier A, Borowski P, Hosmane RS (2007) An analogue of AICAR with dual inhibitory activity against WNV and HCV NTPase/helicase: synthesis and in vitro screening of 4-carbamoyl-5-(4,6-diamino-2,5-dihydro-1,3,5-triazin-2-yl) imidazole-1-β-d-ribofuranoside. Bioorg Med Chem Lett 17:2285–2288.  https://doi.org/10.1016/j.bmcl.2007.01.074 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Emami S, Foroumadi A, Falahati M, Lotfali E, Rajabalian S, Ebrahimi S-A, Farahyar S, Shafiee A (2008) 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorg Med Chem Lett 18:141–146.  https://doi.org/10.1016/j.bmcl.2007.10.111 CrossRefPubMedGoogle Scholar
  80. 80.
    Timur İ, Kocyigit ÜM, Dastan T, Sandal S, Ceribası AO, Taslimi P, Gulcin İ, Koparir M, Karatepe M, Çiftçi M (2019) In vitro cytotoxic and in vivo antitumoral activities of some aminomethyl derivatives of 2,4-dihydro-3H-1,2,4-triazole-3-thiones—evaluation of their acetylcholinesterase and carbonic anhydrase enzymes inhibition profiles. J Biochem Mol Toxicol 33:e22239.  https://doi.org/10.1002/jbt.22239 CrossRefGoogle Scholar
  81. 81.
    Shingalapur RV, Hosamani KM, Keri RS (2009) Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur J Med Chem 44:4244–4248.  https://doi.org/10.1016/j.ejmech.2009.05.021 CrossRefPubMedGoogle Scholar
  82. 82.
    Sarı Y, Aktaş A, Taslimi P, Gök Y, Gulçin İ (2018) Novel N-propylphthalimide- and 4-vinylbenzyl-substituted benzimidazole salts: synthesis, characterization, and determination of their metal chelating effects and inhibition profiles against acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 32:e22009.  https://doi.org/10.1002/jbt.22009 CrossRefGoogle Scholar
  83. 83.
    Gök Y, Akkoç S, Erdoğan H, Albayrak S (2016) In vitro antimicrobial studies of new benzimidazolium salts and silver N-heterocyclic carbene complexes. J Enzym Inhib Med Chem 31(6):1322–1327.  https://doi.org/10.3109/14756366.2015.1132210 CrossRefGoogle Scholar
  84. 84.
    Türker F, Barut Celepci D, Aktaş A, Taslimi P, Gök Y, Aygün M, Gülçin İ (2018) Meta-cyanobenzyl substituted benzimidazolium salts: synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. Arch Pharm 351:1800029.  https://doi.org/10.1002/ardp.201800029 CrossRefGoogle Scholar
  85. 85.
    Borgers M (1980) Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Rev Infect Dis 2:520–534.  https://doi.org/10.1093/clinids/2.4.520 CrossRefPubMedGoogle Scholar
  86. 86.
    Van den Bossche H, Ruysschaert JM, Defrise-Quertain F, Willemsens G, Cornelissen F, Marichal P, Cools W, Van Cutsem J (1982) The interaction of miconazole and ketoconazole with lipids. Biochem Pharma 31:2609–2617.  https://doi.org/10.1016/0006-2952(82)90707-9 CrossRefGoogle Scholar
  87. 87.
    Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43:285–318.  https://doi.org/10.1080/13693780500138971 CrossRefPubMedGoogle Scholar
  88. 88.
    Munayyer HK, Mann PA, Chau AS, Yarosh-Tomaine T, Greene JR, Hare RS, Heimark L, Palermo RE, Loebenberg D, McNicholas PM (2004) Posaconazole is a potent inhibitor of sterol 14α-demethylation in yeasts and molds. Antimicrob Agents Chemother 48:3690–3696.  https://doi.org/10.1128/AAC.48.10.3690-3696.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Hof H (2006) A new, broad-spectrum azole antifungal: posaconazole–mechanisms of action and resistance, spectrum of activity. Mycoses 49:2–6.  https://doi.org/10.1111/j.1439-0507.2006.01295.x CrossRefPubMedGoogle Scholar
  90. 90.
    Vandeputte P, Ferrari S, Coste AT (2011) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol.  https://doi.org/10.1155/2012/713687 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Brown R, Hazen EL (1957) Present knowledge of nystatin, an antifungal antibiotic. Trans NY Acad Sci 19:447–456Google Scholar
  92. 92.
    Sloane MB (1955) A new antifungal antibiotic, mycostatin (nystatin), ior the treatment of moniliasis: a preliminary report. J Investig Dermatol 24:569–571.  https://doi.org/10.1038/jid.1955.77 CrossRefPubMedGoogle Scholar
  93. 93.
    Lemke A, Kiderlen A, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162.  https://doi.org/10.1007/s00253-005-1955-9 CrossRefPubMedGoogle Scholar
  94. 94.
    Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85.  https://doi.org/10.1016/S1473-3099(02)00181-0 CrossRefPubMedGoogle Scholar
  95. 95.
    Kato H, Hagihara M, Yamagishi Y, Shibata Y, Kato Y, Furui T, Watanabe H, Asai N, Koizumi Y, Mikamo H (2018) The evaluation of frequency of nephrotoxicity caused by liposomal amphotericin B. J Infect Chemother 24:725–728.  https://doi.org/10.1016/j.jiac.2018.04.014 CrossRefPubMedGoogle Scholar
  96. 96.
    Bossche HV (2002) Echinocandins: an update. Expert Opin Ther Pat 12:151–167.  https://doi.org/10.1517/13543776.12.2.151 CrossRefGoogle Scholar
  97. 97.
    Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151.  https://doi.org/10.1016/S0140-6736(03)14472-8 CrossRefPubMedGoogle Scholar
  98. 98.
    Douglas C, D’ippolito J, Shei G, Meinz M, Onishi J, Marrinan J, Li W, Abruzzo G, Flattery A, Bartizal K (1997) Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-d-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479.  https://doi.org/10.1128/AAC.41.11.2471 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Grover ND (2010) Echinocandins: a ray of hope in antifungal drug therapy. Indian J Pharmacol 42:9–11.  https://doi.org/10.4103/0253-7613.62396 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Denning DW (2002) Echinocandins: a new class of antifungal. J Antimicrob Chemother 49:889–891.  https://doi.org/10.1093/jac/dkf045 CrossRefPubMedGoogle Scholar
  101. 101.
    Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46:171–179.  https://doi.org/10.1093/jac/46.2.171 CrossRefPubMedGoogle Scholar
  102. 102.
    Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L (2000) Discovery of novel antifungal (1,3)-β-d-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377.  https://doi.org/10.1128/AAC.44.2.368-377.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sanglard D, Coste A, Ferrari S (2009) Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 9:1029–1050.  https://doi.org/10.1111/j.1567-1364.2009.00578.x CrossRefPubMedGoogle Scholar
  104. 104.
    Ryder NS (1988) Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann NY Acad Sci 544:208–220.  https://doi.org/10.1111/j.1749-6632.1988.tb40405.x CrossRefPubMedGoogle Scholar
  105. 105.
    Baloch RI, Mercer EI (1987) Inhibition of sterol Δ8 → Δ7-isomerase and Δ14-reductase by fenpropimorph tridemorph and fenpropidin in cell-free enzyme systems from Saccharomyces cerevisiae. Phytochemistry 26:663–668.  https://doi.org/10.1016/S0031-9422(00)84762-7 CrossRefGoogle Scholar
  106. 106.
    Polak A (1990) Mode of action studies. In: Ryley JF (ed) Chemotherapy of fungal diseases. Handbook of experimental pharmacology, vol 96. Springer, Berlin, pp 153–182.  https://doi.org/10.1007/978-3-642-75458-6_8 CrossRefGoogle Scholar
  107. 107.
    Evans WC (2009) Trease and evans’ pharmacognosy E-book. Els Health Sci, Saunders Ltd., LondonGoogle Scholar
  108. 108.
    Mead J, Smith J, Williams R (1958) Studies in detoxication. 72. The metabolism of coumarin and of o-coumaric acid. Biochem J 68:67–74.  https://doi.org/10.1042/bj0680067 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int.  https://doi.org/10.1155/2013/963248 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Murray R (1989) Coumarins. Nat Prod Rep 6:591–624CrossRefPubMedGoogle Scholar
  111. 111.
    Piller N (1975) A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. Br J Exp Pathol 56:554–559PubMedPubMedCentralGoogle Scholar
  112. 112.
    Whitlon D, Sadowski J, Suttie J (1978) Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry 17:1371–1377.  https://doi.org/10.1021/bi00601a003 CrossRefPubMedGoogle Scholar
  113. 113.
    Hodak K, Jakesová V, Dadák V (1967) On the antibiotic effects of natural coumarins. VI. The relation of structure to the antibacterial effects of some natural coumarins and the neutralization of such effects. Cesk Farm 16:86–91PubMedGoogle Scholar
  114. 114.
    Wang CM, Zhou W, Li CX, Chen H, Shi ZQ, Fan YJ (2009) Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea. J Asian Nat Prod Res 11:783–791.  https://doi.org/10.1080/10286020903158964 CrossRefPubMedGoogle Scholar
  115. 115.
    Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, Caranfa MJ, Breen AL, Bartus HR (1993) The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J Med Chem 36:4131–4138.  https://doi.org/10.1021/jm00078a001 CrossRefPubMedGoogle Scholar
  116. 116.
    Kashman Y, Gustafson KR, Fuller R, McMahon J, Currens M, Buckheit JR, Hughes S, Cragg G, Boyd M (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35:2735–2743.  https://doi.org/10.1021/jm00093a004 CrossRefPubMedGoogle Scholar
  117. 117.
    Shin E, Choi K-M, Yoo H-S, Lee C-K, Hwang BY, Lee MK (2010) Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol Pharm Bull 33:1610–1614.  https://doi.org/10.1248/bpb.33.1610 CrossRefPubMedGoogle Scholar
  118. 118.
    Luszczki JJ, Wojda E, Andres-Mach M, Cisowski W, Glensk M, Glowniak K, Czuczwar SJ (2009) Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study. Epile Res 85:293–299.  https://doi.org/10.1016/j.eplepsyres.2009.03.027 CrossRefGoogle Scholar
  119. 119.
    Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, Rosselli S (2009) Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Mol 14:939–952.  https://doi.org/10.3390/molecules14030939 CrossRefGoogle Scholar
  120. 120.
    Finkelstein N, Rivett DE (1976) Puberulin, a new prenyloxy-coumarin from Agathosma puberula. Phytochemistry.  https://doi.org/10.1016/S0031-9422(00)84417-9 CrossRefGoogle Scholar
  121. 121.
    Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5:293–308.  https://doi.org/10.1007/s11101-006-9040-2 CrossRefGoogle Scholar
  122. 122.
    Pereira TM, Franco DP, Vitorio F, Kummerle AE (2018) Coumarin compounds in medicinal chemistry: some important examples from the last years. Curr Top Med Chem 18:124–148.  https://doi.org/10.2174/1568026618666180329115523 CrossRefPubMedGoogle Scholar
  123. 123.
    Costa TM, Tavares LBB, de Oliveira D (2016) Fungi as a source of natural coumarins production. App Microbiol Biotechnol 100:6571–6584.  https://doi.org/10.1007/s00253-016-7660-z CrossRefGoogle Scholar
  124. 124.
    Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG (2015) Coumarins-An important class of phytochemicals, phytochemicals. IntechOpen 5:113–140.  https://doi.org/10.5772/59982 CrossRefGoogle Scholar
  125. 125.
    Yang J, Sun X, Yang F, Liu C (2013) New agrochemicals disclosed in 2012. (State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Research Institute of Chemical Industry Co., Ltd., Shenyang 110021, China). Agrochemical 2013-01Google Scholar
  126. 126.
    Peng XM, Damu GLV, Zhou H (2013) Current developments of coumarin compounds in medicinal chemistry. Curr Pharm Des 19:3884–3930.  https://doi.org/10.2174/1381612811319210013 CrossRefPubMedGoogle Scholar
  127. 127.
    Stiefel C, Schubert T, Morlock GE (2017) Bioprofiling of cosmetics with focus on streamlined coumarin analysis. ACS Omega 2:5242–5250.  https://doi.org/10.1021/acsomega.7b00562 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Boisde PM, Meuly WC, Ub Staff (2000) Coumarin. Kirk-Othmer Encycl Chem Technol 4:1–10.  https://doi.org/10.1002/0471238961.0315211302150919.a01 CrossRefGoogle Scholar
  129. 129.
    Authority EFS (2008) Coumarin in flavourings and other food ingredients with flavouring properties-Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J 6:793.  https://doi.org/10.2903/j.efsa.2008.793 CrossRefGoogle Scholar
  130. 130.
    He X, Shang Y, Zhou Y, Yu Z, Han G, Jin W, Chen J (2015) Synthesis of coumarin-3-carboxylic esters via FeCl3-catalyzed multicomponent reaction of salicylaldehydes, Meldrum’s acid and alcohols. Tetrahedron 71:863–868.  https://doi.org/10.1016/j.tet.2014.12.042 CrossRefGoogle Scholar
  131. 131.
    Sandhu S, Bansal Y, Silakari O, Bansal G (2014) Coumarin hybrids as novel therapeutic agents. Bioorg Med Chem 22:3806–3814.  https://doi.org/10.1016/j.bmc.2014.05.032 CrossRefPubMedGoogle Scholar
  132. 132.
    Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20:1175–1180.  https://doi.org/10.1016/j.bmc.2011.12.042 CrossRefPubMedGoogle Scholar
  133. 133.
    Upadhyay K, Mishra RK, Kumar A (2008) A convenient synthesis of some coumarin derivatives using SnCl2·2H2O as catalyst. Catal Lett 121:118–120.  https://doi.org/10.1007/s10562-007-9307-2 CrossRefGoogle Scholar
  134. 134.
    Shaabani A, Ghadari R, Rahmati A, Rezayan A (2009) Coumarin synthesis via Knoevenagel condensation reaction in 1,1,3,3-N,N,N′,N′-tetramethylguanidinium trifluoroacetate ionic liquid. J Iran Chem Soc 6:710–714.  https://doi.org/10.1007/BF03246160 CrossRefGoogle Scholar
  135. 135.
    Harayama T, Nakatsuka K, Nishioka H, Murakami K, Hayashida N, Ishii H (1994) Convenient synthesis of a simple coumarin from salicylaldehyde and wittig reagent. II. Synthesis of bromo-and methoxycarbonylcoumarins. Chem Pharm Bull 42:2170–2173.  https://doi.org/10.1248/cpb.42.2170 CrossRefGoogle Scholar
  136. 136.
    Ghantwal S, Samant S (1999) Claisen rearrangement of 3-bromo-,3, 6-dibromo-,3,8-dibromo-and 8-iodo/aminomethyl/acetyl-7-allyloxy-4-methylcoumarins. NISCAIR-CSIR, India, pp 1242–1247. http://hdl.handle.net/123456789/16650. Accessed Nov 1999
  137. 137.
    Bulut M, Erk C (1996) Improved synthesis of some hydroxycoumarins. Dyes Pigm 30:99–104.  https://doi.org/10.1016/0143-7208(95)00060-7 CrossRefGoogle Scholar
  138. 138.
    Al-Bayati RI, Al-Amiery AAH, Al-Majedy YK (2010) Design, synthesis and bioassay of novel coumarins. Afr J Pure Appl Chem 4(6):74–86Google Scholar
  139. 139.
    Robertson A, Sandrock WF, Hendry CB (1931) CCCXXX. Hydroxy-carbonyl compounds. Part V. The preparation of coumarins and 1:4-pyrones from phenol, p-cresol, quinol, and α-naphthol. J Chem Soc.  https://doi.org/10.1039/JR9310002426 CrossRefGoogle Scholar
  140. 140.
    Soares VC, Alves MB, Souza ER, Pinto IO, Rubim JC, Andrade CKZ, Suarez PA (2007) Organo-niobate ionic liquids: synthesis, characterization and application as acid catalyst in Pechmann reactions. Int J Mol Sci 8:392–398.  https://doi.org/10.3390/i8050392 CrossRefPubMedCentralGoogle Scholar
  141. 141.
    John E, Israelstam S (1961) Use of cation exchange resins in organic reactions. I. The Von Pechmann reaction. J Org Chem 26:240–242.  https://doi.org/10.1021/jo01060a602 CrossRefGoogle Scholar
  142. 142.
    Reddy BM, Reddy VR, Giridhar D (2001) Synthesis of coumarins catalyzed by eco-friendly W/ZrO2 solid acid catalyst. Synth Commun 31:3603–3607.  https://doi.org/10.1081/SCC-100107007 CrossRefGoogle Scholar
  143. 143.
    Al-Majedy YK, Kadhum AAH, Al-Amiery AA, Mohamad AB (2017) Coumarins: the antimicrobial agents. Syst Rev Pharm 8:62–70.  https://doi.org/10.5530/srp.2017.1.11 CrossRefGoogle Scholar
  144. 144.
    Hoult J, Paya M (1996) Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacol Vasc Syst 27:713–722.  https://doi.org/10.1016/0306-3623(95)02112-4 CrossRefGoogle Scholar
  145. 145.
    Mercer DK, Robertson J, Wright K, Miller L, Smith S, Stewart CS, Deborah A (2013) A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses. PLoS ONE 8:e80760.  https://doi.org/10.1371/journal.pone.0080760 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Guerra FQ, Araújo RS, Sousa JP, Silva VA, Pereira FO, Mendonça-Junior FJ, Barbosa-Filho JM, Pereira JA, Lima EO (2018) A new coumarin derivative, 4-acetatecoumarin, with antifungal activity and association study against Aspergillus spp. Braz J Microbiol 49:407–413.  https://doi.org/10.1016/j.bjm.2017.06.009 CrossRefPubMedGoogle Scholar
  147. 147.
    Puttaraju KB, Shivashankar K, Mahendra M, Rasal VP, Vivek PNV, Rai K, Chanu MB (2013) Microwave assisted synthesis of dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones; synthesis, in vitro antimicrobial and anticancer activities of novel coumarin substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones. Eur J Med Chem 69:316–322.  https://doi.org/10.1016/j.ejmech.2013.07.015 CrossRefPubMedGoogle Scholar
  148. 148.
    Marcondes HC, de Oliveira TT, Taylor JG, Hamoy M, do Leonel Neto A, de Mello VJ, Nagem TJ (2015) Antifungal activity of coumarin mammeisin isolated from species of the Kielmeyera Genre (family: Clusiaceae or Guttiferae). J Chem Article ID 241243.  https://doi.org/10.1155/2015/241243
  149. 149.
    Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K, Vuorela P (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305.  https://doi.org/10.1016/S0378-8741(00)00279-8 CrossRefPubMedGoogle Scholar
  150. 150.
    Thati B, Noble A, Rowan R, Creaven BS, Walsh M, McCann M, Egan D, Kavanagh K (2007) Mechanism of action of coumarin and silver(I)–coumarin complexes against the pathogenic yeast Candida albicans. Toxicol In Vitro 21:801–808.  https://doi.org/10.1016/j.tiv.2007.01.022 CrossRefPubMedGoogle Scholar
  151. 151.
    Zhang MZ, Zhang RR, Wang JQ, Yu X, Zhang YL, Wang QQ, Zhang WH (2016) Microwave-assisted synthesis and antifungal activity of novel fused Osthole derivatives. Eur J Med Chem 124:10–16.  https://doi.org/10.1016/j.ejmech.2016.08.012 CrossRefPubMedGoogle Scholar
  152. 152.
    Siddiqui ZN, Ahmad A, Khan AU (2011) Synthesis of 4-hydroxycoumarin heteroarylhybrids as potential antimicrobial agents. Arch Pharma 344:394–401.  https://doi.org/10.1002/ardp.201000218 CrossRefGoogle Scholar
  153. 153.
    Dietrich SM, Valio I (1973) Effect of coumarin and its derivatives on the growth of Pythium and other fungi. Trans Br Mycol Soc 61:461–469.  https://doi.org/10.1016/S0007-1536(73)80116-0 CrossRefGoogle Scholar
  154. 154.
    Knypl J (1963) A fungistatic action of coumarin. Nature 200:800–802.  https://doi.org/10.1038/200800b0 CrossRefPubMedGoogle Scholar
  155. 155.
    Guerra FQS, Araújo RSAD, Sousa JPD, Pereira FDO, Mendonça-Junior FJ, Barbosa-Filho JM, de Oliveira Lima E (2015) Evaluation of antifungal activity and mode of action of new coumarin derivative, 7-hydroxy-6-nitro-2h-1-benzopyran-2-one, against Aspergillus spp. Evid Based Complement Altern Med Article ID 925096.  https://doi.org/10.1155/2015/925096
  156. 156.
    Shao PL, Huang LM, Hsueh PR (2007) Recent advances and challenges in the treatment of invasive fungal infections. Int J Antimicrob Agents 30:487–495.  https://doi.org/10.1016/j.ijantimicag.2007.07.019 CrossRefPubMedGoogle Scholar
  157. 157.
    Henry JC (1984) Ketoconazole. Dermatol Clin 2:121–128.  https://doi.org/10.1016/S0733-8635(18)30996-3 CrossRefGoogle Scholar
  158. 158.
    Zaragoza R, Pemán J (2008) The diagnostic and therapeutic approach to fungal infections in critical care settings. Adv Sepsis 6:90–98Google Scholar
  159. 159.
    Ghannoum MA, Kuhn D (2002) Voriconazole—better chances for patients with invasive mycoses. Eur J Med Res 7:242–256PubMedGoogle Scholar
  160. 160.
    Denning DW, Ribaud P, Milpied N, Caillot D, Herbrecht R, Thiel E, Haas A, Ruhnke M, Lode H (2002) Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 34:563–571.  https://doi.org/10.1086/324620 CrossRefPubMedGoogle Scholar
  161. 161.
    Thompson GR, Cadena J, Patterson TF (2009) Overview of antifungal agents. Clin Chest Med 30:203–215.  https://doi.org/10.1016/j.ccm.2009.02.001 CrossRefPubMedGoogle Scholar
  162. 162.
    Keating GM (2005) Posaconazole. Drugs 65:1553–1567.  https://doi.org/10.2165/00003495-200565110-00007 CrossRefPubMedGoogle Scholar
  163. 163.
    Torres HA, Hachem RY, Chemaly RF, Kontoyiannis DP, Raad II (2005) Posaconazole: a broad-spectrum triazole antifungal. Lancet Infect Dis 5:775–785.  https://doi.org/10.1016/S1473-3099(05)70297-8 CrossRefPubMedGoogle Scholar
  164. 164.
    Yamazumi T, Pfaller M, Messer S, Houston A, Hollis R, Jones R (2000) In vitro activities of ravuconazole (BMS-207147) against 541 clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 44:2883–2886.  https://doi.org/10.1128/AAC.44.10.2883-2886.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Zonios DI, Bennett JE (2008) Update on azole antifungals. In: Seminars in respiratory and critical care medicine. Thieme Medical Publishers, New York, pp 198–210.  https://doi.org/10.1055/s-2008-1063858
  166. 166.
    Pardasani A (2000) Oral antifungal agents used in dermatology. Curr Probl Dermatol 12(6):270–275.  https://doi.org/10.1016/S1040-0486(00)90023-1 CrossRefGoogle Scholar
  167. 167.
    Vincent T (2000) Current and future antifungal therapy: new targets for antifungal therapy. Int J Antimicrob Agents 16:317–321.  https://doi.org/10.1016/S0924-8579(00)00258-2 CrossRefGoogle Scholar
  168. 168.
    Fleet G (1991) Cell walls. In: Rose AH, Harrison JS (eds) The yeasts: yeast organelles, 4, 2nd edn. Acad Press, London, pp 199–277Google Scholar
  169. 169.
    Garcia-Cuesta C, Sarrion-Pérez MG, Bagán JV (2014) Current treatment of oral candidiasis: a literature review. J Clin Exp Dent 6:e576–e582.  https://doi.org/10.4317/jced.51798 CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Te Welscher YM, Hendrik H, Balagué MM, Souza CM, Riezman H, De Kruijff B, Breukink E (2008) Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem 283:6393–6401.  https://doi.org/10.1074/jbc.M707821200 CrossRefGoogle Scholar
  171. 171.
    Nett JE, Andes DR (2016) Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin 30:51–83.  https://doi.org/10.1016/j.idc.2015.10.012 CrossRefGoogle Scholar
  172. 172.
    Chen SC, Sorrell TC (2007) Antifungal agents. Med J Aust 187:404–409.  https://doi.org/10.5694/j.1326-5377.2007.tb01313.x CrossRefPubMedGoogle Scholar
  173. 173.
    Khan ZK, Jain P (2000) Antifungal agents and immunomodulators in systemic mycoses. Indian J Chest Dis Allied Sci 42:345–356PubMedGoogle Scholar
  174. 174.
    Hata M, Ishii Y, Watanabe E, Uoto K, Kobayashi S, Yoshida K-I, Otani T, Ando A (2010) Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Med Mycol 48:613–621.  https://doi.org/10.3109/13693780903390208 CrossRefPubMedGoogle Scholar
  175. 175.
    Al-Amiery AA, Kadhum AAH, Mohamad AB (2012) Antifungal activities of new coumarins. Molecules 17:5713–5723.  https://doi.org/10.3390/molecules17055713 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Behrami A, Krasniqi I (2012) Antibacterial activity of coumarine derivatives synthesized from 8-amino-4,7-dihydroxy-chromen-2-one and comparison with standard drug. J Chem Pharm Res 4:2495–2500Google Scholar
  177. 177.
    Bonsignore L, Cottiglia F, Elkhaili H, Jehl F, Lavagna SM, Loy G, Manna F, Monteil H, Pompei D, Secci D (1998) Synthesis and antimicrobial activity of coumarin 7-substituted cephalosporins and sulfones. Il Farmaco 53:425–430.  https://doi.org/10.1016/S0014-827X(98)00047-0 CrossRefPubMedGoogle Scholar
  178. 178.
    Brahmbhatt D, Kaneria AR, Patel AK, Patel NH (2010) Synthesis and antimicrobial screening of some 3-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin-2-yl] and 4-methyl-3-phenyl-6-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin-2-yl] coumarins. CSIR, pp 971–977. http://hdl.handle.net/123456789/9935. Accessed July 2010
  179. 179.
    Bairagi S, Bhosale A, Deodhar MN (2009) Design, synthesis and evaluation of Schiff’s bases of 4-chloro-3-coumarin aldehyde as antimicrobial agents. J Chem 6:759–762.  https://doi.org/10.1155/2009/874389 CrossRefGoogle Scholar
  180. 180.
    Basanagouda M, Kulkarni MV, Sharma D, Gupta VK, Sandhyarani P, Rasal VP (2009) Synthesis of some new 4-aryloxmethylcoumarins and examination of their antibacterial and antifungal activities. J Chem Sci 121:485–495.  https://doi.org/10.1007/s12039-009-0058-z CrossRefGoogle Scholar
  181. 181.
    Widelski J, Luca SV, Skiba A, Chinou I, Marcourt L, Wolfender J-L, Skalicka-Wozniak K (2018) Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians Tamamsch. Molecules 23:1222.  https://doi.org/10.3390/molecules23051222 CrossRefPubMedCentralGoogle Scholar
  182. 182.
    Zhang SY, Fu DJ, Sun HH, Yue XX, Liu YC, Zhang YB, Liu HM (2016) Synthesis and bioactivity of novel coumarin derivatives. Chem Heterocycl Compd 52:374–378CrossRefGoogle Scholar
  183. 183.
    Dizbay M et al (2009) Fungemia and cutaneous zygomycosis due to Mucor circinelloides in an intensive care unit patient: case report and review of literature. Jpn J Infect Dis 62(2):146–148PubMedGoogle Scholar
  184. 184.
    Kobayashi GS (1996) Disease mechanisms of fungi. In: Baron S (ed) Medical microbiology, 4th edn. GalvestonGoogle Scholar
  185. 185.
    Chapman SW, Dismukes WE, Proia LA, Bradsher RW, Pappas PG, Threlkeld MG, Kauffman CA (2008) Clinical practice guidelines for the management of blastomycosis: 2008 Update by the Infectious Diseases Society of America. Clin Infect Dis 46(12):1801–1812.  https://doi.org/10.1086/588300 CrossRefPubMedGoogle Scholar
  186. 186.
    Tavanti A, Naglik JR, Osherov N (2012). Host–fungal interactions: pathogenicity versus immunity. Int J Microbiol Article ID 562480.  https://doi.org/10.1155/2012/562480

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyNational Institute of TechnologyRaipurIndia

Personalised recommendations