Advertisement

Synthesis and biological evaluation of 1,2,4-triazolidine-3-thiones as potent acetylcholinesterase inhibitors: in vitro and in silico analysis through kinetics, chemoinformatics and computational approaches

  • Prasad G. Mahajan
  • Nilam C. Dige
  • Balasaheb D. Vanjare
  • Hussain Raza
  • Mubashir Hassan
  • Sung-Yum SeoEmail author
  • Chong- Hyeak Kim
  • Ki Hwan LeeEmail author
Original Article
  • 38 Downloads

Abstract

We have designed and synthesized a novel acidic ionic liquid and explored its catalytic efficiency for the synthesis of 1,2,4-triazolidine-3-thione derivatives. A simple reaction between aldehydes and thiosemicarbazide for short time in 60:40 v/v water/ethanol at room temperature offers target 1,2,4-triazolidine-3-thione derivatives. The formation of target compounds is confirmed by NMR, IR and ESI–MS analysis. Pleasingly, synthesized compounds show noteworthy acetylcholinesterase (AChE) inhibitory activity with much lower IC50 values 0.0269 ± 0.0021–1.1725 ± 0.0112 μM than standard Neostigmine methylsulphate. In addition, synthesized 1,2,4-triazolidine-3-thiones exhibits significant free radical scavenging activity as compared to standard vitamin C. The studies on validation of Lipinski’s rule through chemoinformatics properties and molecular docking analysis are in support of in vitro analysis. Therefore, overall present study illustrates synthesis of some new 1,2,4-triazolidines-3-thiones which can serve as a template for drug designing such as AChE inhibitors.

Graphic abstract

Herein, we proposed ionic liquid-catalyzed ease of synthetic approach for medicinally important 1,2,4-triazolidine-3-thiones and their bio-evaluations.

Keywords

Ionic liquid 1,2,4-triazolidine-3-thiones Acetylcholinesterase inhibition Lipinski rule Molecular docking 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Education(NRF-2019R1I1A3A01059089).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interests.

Supplementary material

11030_2019_9983_MOESM1_ESM.docx (5.4 mb)
Supplementary material 1 (DOCX 5539 kb)

References

  1. 1.
    Verma C, Ebenso EE, Quraishi M (2017) Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview. J Mol Liq 233:403–414.  https://doi.org/10.1016/j.molliq.2017.02.111 CrossRefGoogle Scholar
  2. 2.
    Cioc RC, Ruijter E, Orru RV (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975.  https://doi.org/10.1039/C4GC00013G CrossRefGoogle Scholar
  3. 3.
    Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? a comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934.  https://doi.org/10.1039/B617536H CrossRefGoogle Scholar
  4. 4.
    Qiang Y, Zhang S, Guo L, Zheng X, Xiang B, Chen S (2017) Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corros Sci 119:68–78.  https://doi.org/10.1016/j.corsci.2017.02.021 CrossRefGoogle Scholar
  5. 5.
    Mizuta S, Otaki H, Kitagawa A, Kitamura K, Morii Y, Ishihara J, Nishi K, Hashimoto R, Usui T, Chiba K (2017) Ionic liquid-mediated hydrofluorination ofo-azaxylylenes derived from 3-bromooxindoles. Org Lett 19:2572–2575.  https://doi.org/10.1021/acs.orglett.7b00887 CrossRefGoogle Scholar
  6. 6.
    Zhang M, Ettelaie R, Yan T, Zhang S, Cheng F, Binks BP, Yang H (2017) Ionic liquid droplet microreactor for catalysis reactions not at equilibrium. J Am Chem Soc 139:17387–17396.  https://doi.org/10.1021/jacs.7b07731 CrossRefGoogle Scholar
  7. 7.
    Ventura SPM, Silva FP, Quental MP, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes forbioactive compounds: past, present, and future trends. Chem Rev 117:6984–7052.  https://doi.org/10.1021/acs.chemrev.6b00550 CrossRefGoogle Scholar
  8. 8.
    Zeng S, Zhang X, Bai L, Zhang X, Wang J, Bao D, Li M, Liu X, Zhang S (2017) Ionic-liquid-based CO2 capture systems: structure, interaction and process. Chem Rev 117:9625–9673.  https://doi.org/10.1021/acs.chemrev.7b00072 CrossRefGoogle Scholar
  9. 9.
    Yang B, Zhang Q, Fei Y, Zhou F, Wang P, Deng Y (2015) Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient SO2 absorption. Green Chem 17:3798–3805.  https://doi.org/10.1039/C5GC00691K CrossRefGoogle Scholar
  10. 10.
    Gupta NS, Kad GL, Singh J (2007) Acidic ionic liquid [bmim]HSO4: An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catal Commun 8:1323–1328.  https://doi.org/10.1016/j.catcom.2006.11.030 CrossRefGoogle Scholar
  11. 11.
    Silveira BA, Ebeling G, Goncalves RS, Gozzo FC, Eberlin MN, Dupont J (2004) Organoindate room temperature ionic liquid: synthesis, physico-chemical properties and application. Synthesis 8:1155–1158.  https://doi.org/10.1055/s-2004-822372 Google Scholar
  12. 12.
    Maddila S, Pagadala R, Jonnalagadda SB (2013) 1,2,4-triazoles: a review of synthetic approaches and the biological activity. Lett Org Chem 10:693–714.  https://doi.org/10.2174/157017861010131126115448 CrossRefGoogle Scholar
  13. 13.
    Maddila SN, Maddila S, Gangu KK, Zyl WE, Jonnalagadda SB (2017) Sm2O3/Fluoroapatite as a reusable catalyst for the facile, green, one-pot synthesis of triazolidine-3-thione derivatives under aqueous conditions. J Fluor Chem 195:79–84.  https://doi.org/10.1016/j.jfluchem.2017.01.012 CrossRefGoogle Scholar
  14. 14.
    Ramesh R, Lalitha A (2015) PEG-assisted two-component approach for the facile synthesis of 5-aryl-1,2,4-triazolidine-3- thiones under catalyst-free conditions. RSC Adv 5:51188–51192.  https://doi.org/10.1039/C5RA07726E CrossRefGoogle Scholar
  15. 15.
    Kane JM, Staeger MA, Dalton CR, Miller FP, Dudley MW, Ogden AML, Kehne JH, Ketteler HJ, McCloskey TC, Senyah Y, Chmieleweski PA, Miller JA (1994) 5-Aryl-3-(alkylthio)-4H-1,2,4-triazoles as selective antagonists of strychnine-induced convulsions and potential antispastic agents. J Med Chem 37:125–132.  https://doi.org/10.1021/jm00027a015 CrossRefGoogle Scholar
  16. 16.
    Kane JM, Dudley MW, Sorensen SM, Miller FP (1988) 2,4-dihydro-3H-1,2,4-triazole-3-thiones as potential antidepressant agents. J Med Chem 31:1253–1258.  https://doi.org/10.1021/jm00401a031 CrossRefGoogle Scholar
  17. 17.
    Suresh Kumar GV, Rajendraprasad Y, Malikarjuna BP, Chnadrashekar SM, Kistayya C (2010) Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur J Med Chem 45:2063–2074.  https://doi.org/10.1016/j.ejmech.2010.01.045 CrossRefGoogle Scholar
  18. 18.
    Amir M, Kumar S (2007) Synthesis and evaluation of anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation properties of ibuprofen derivatives. Acta Pharm 57:31–45.  https://doi.org/10.2478/v10007-007-0003-y CrossRefGoogle Scholar
  19. 19.
    Gokce M, Cakir B, Erol K, Sahin MF (2001) Synthesis and antinociceptive activity of [(2-oxobenzothiazolin-3-yl)methyl]-4-alkyl/aryl-1,2,4-triazoline-5-thiones. Arch Pharm 334:279–283.  https://doi.org/10.1002/1521-4184(200109)334:8/9%3c279 CrossRefGoogle Scholar
  20. 20.
    Holla SB, Veerendra B, Poojary B, Shivananda MK (2003) Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur J Med Chem 38:759–767.  https://doi.org/10.1016/S0223-5234(03)00128-4 CrossRefGoogle Scholar
  21. 21.
    Küçükgüzel I, Tatar E, Küçükgüzel SG, Rollas S, De Clercq E (2008) Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur J Med Chem 43:381–392.  https://doi.org/10.1016/j.ejmech.2007.04.010 CrossRefGoogle Scholar
  22. 22.
    Ouyang X, Chen X, Piatnitski EL, Kiselyov AS, He HY, Mao YY, Pattaropong V, Yu Y, Kim KH, Kincaid J, Smith L, Wong WC, Lee SP, Milligan DL, Malikzay A, Fleming J, Gerlak J, Deevi D, Doody JF, Chiang HH, Patel SN, Wang Y, Rolser RL, Kussie P, Labelle M, Tuma MC (2005) Synthesis and structure–activity relationships of 1,2,4-triazoles as a novel class of potent tubulin polymerization inhibitors. Bioorg Med Chem Lett 15:5154–5159.  https://doi.org/10.1016/j.bmcl.2005.08.056 CrossRefGoogle Scholar
  23. 23.
    Hester JB, Rudzik AD, Kamdar BV (1971) 6-Phenyl-4H-s-triazolo[4,3-a][1,4] benzodiazepines which have central nervous system depressant activity. J Med Chem 14:1078–1081.  https://doi.org/10.1021/jm00293a015 CrossRefGoogle Scholar
  24. 24.
    Palaska E, Sahin Kelicen P, Tugba Durlu N, Altinok G (2002) Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. IL Farmaco 57:101–107.  https://doi.org/10.1016/S0014-827X(01)01176-4 CrossRefGoogle Scholar
  25. 25.
    Varvaresou A, Siatra-Papastaikoudi T, Tsotinis TT, Tsantili-Kakoulidou A (1998) Synthesis, lipophilicity and biological evaluation of indole-containing derivatives of 1,3,4-thiadiazole and 1,2,4-triazole. IL Farmaco 53:320–326.  https://doi.org/10.1016/S0014-827X(98)00024-X CrossRefGoogle Scholar
  26. 26.
    Jin JY, Zhang LX, Zhang AJ, Lei XX, Zhu JH (2007) Synthesis and biological activity of some novel derivatives of 4-amino-3-(D-galactopentitol-1-yl)-5-mercapto-1,2,4-triazole. Molecules 12:1596–1605.  https://doi.org/10.3390/12081596 CrossRefGoogle Scholar
  27. 27.
    Dogan HN, Duran A, Rollas S (2005) Synthesis and preliminary anticancer activity of new 1H-4,5-dihydro-3-(3-hydroxy-2-naphthyl)-4-substituted-1,2,4-triazoline -5-thiones Part II. Indian J Chem Sect B 44:2301–2307Google Scholar
  28. 28.
    Suresh Kumar GV, Rajendra Prasad Y, Mallikarjuna BP, Chandrashekar SM (2010) Synthesis and pharmacological evaluation of clubbed isopropylthiazole derived triazolothiadiazoles, triazolothiadiazines and mannich bases as potential antimicrobial and antitubercular agents. Eur J Med Chem 45:5120–5129.  https://doi.org/10.1016/j.ejmech.2010.08.023 CrossRefGoogle Scholar
  29. 29.
    Li Z, Gu Z, Yin K, Zhang R, Deng Q, Xiang J (2009) Synthesis of substituted-phenyl-1,2,4-triazol-3-thione analogues with modified d-glucopyranosyl residues and their antiproliferative activities. Eur J Med Chem 44:4716–4720.  https://doi.org/10.1016/j.ejmech.2009.05.030 CrossRefGoogle Scholar
  30. 30.
    Katica R, Vesna D, Vlado K, Dora GM (2001) Synthesis, antibacterial and antifungal activity of 4-substituted-5-aryl-1,2,4-triazoles. Molecules 6:815–824.  https://doi.org/10.3390/61000815 CrossRefGoogle Scholar
  31. 31.
    Demirbas N, Karaoglu SA, Demirbas A, Sancak K (2004) Synthesis and antimicrobial activities of some new 1-(5-phenylamino-[1,3,4]thiadiazol-2-yl) methyl-5-oxo-[1, 2,4]triazole and 1-(4-phenyl-5-thioxo-[1,2,4]triazol-3-yl) methyl-5-oxo- [1,2,4]triazole derivatives. Eur J Med Chem 39:793–804.  https://doi.org/10.1016/j.ejmech.2004.06.007 CrossRefGoogle Scholar
  32. 32.
    Umut SG, Nesrin GK, Ozgur G, Yavuz K, Ekrem K, Samil I, Meral A (2007) 1-acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg Med Chem 15:5738–5751.  https://doi.org/10.1016/j.bmc.2007.06.006 CrossRefGoogle Scholar
  33. 33.
    Yaseen AA, Mohammad NA, Najim AA (2004) Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives. IL Farmaco 59:775–783.  https://doi.org/10.1016/j.farmac.2004.05.006 CrossRefGoogle Scholar
  34. 34.
    Spinelli R, Sanchis I, Aimaretti FM, Attademo AM, Portela M, Humpola M, Tonarelli GG, Siano AS (2019) Natural multi-target inhibitors of cholinesterases and monoamine oxidase enzymes with antioxidant potential from skin extracts of Hypsiboas cordobae and Pseudis minuta (Anura: Hylidae). Chem Biodivers 16:e1800472.  https://doi.org/10.1002/cbdv.201800472 CrossRefGoogle Scholar
  35. 35.
    Andrade-Jorge E, Sanchez-Labastida LA, Soriano-Ursua MA, Guevara-Salazar JA, Trujillo-Ferrara JG (2018) Isoindolines/isoindoline-1,3-diones as AChE inhibitors against Alzheimer’s disease, evaluated by an improved ultra-micro assay. Med Chem Res 27:2187–2198.  https://doi.org/10.1007/s00044-018-2226-5 CrossRefGoogle Scholar
  36. 36.
    Andrade-Jorge E, Bribiesca-Carlos J, Martinez-Martinez FJ, Soriano-Ursua MA, Padilla-Martinez II, Trujillo-Ferrara JG (2018) Crystal structure, DFT calculations and evaluation of 2-(2-(3,4-dimethoxyphenyl) ethyl)isoindoline-1,3-dione as AChE inhibitor. Chem Cent J 12:74.  https://doi.org/10.1186/s13065-018-0442-1 CrossRefGoogle Scholar
  37. 37.
    Taslimi P, Osmanova S, Gulcin I, Sardarova S, Farzaliyev V, Sujayev A, Kaya R, Koc F, Beydemir S, Alwasel SH, Kufrevioglu OI (2017) Discovery of potent carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase enzymes inhibitors: the new amides and thiazolidine-4-ones synthesized on an acetophenone base. J Biochem Mol Toxicol 31(9):e21931.  https://doi.org/10.1002/jbt.21931 CrossRefGoogle Scholar
  38. 38.
    Pagliai F, Pirali T, Grosso ED, Brisco RD, Tron GC, Sorba G, Genazzani AA (2006) Rapid synthesis of triazole-modified resveratrol analogues via click chemistry. J Med Chem 49:467–470.  https://doi.org/10.1021/jm051118z CrossRefGoogle Scholar
  39. 39.
    Bakunov SA, Bakunova SM, Wenzler T, Ghebru M, Werbovetz KA, Brun R, Tidwell RR (2010) Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J Med Chem 53:254–272.  https://doi.org/10.1021/jm901178d CrossRefGoogle Scholar
  40. 40.
    Alvarez R, Velazquez S, Felix AS, Aquaro S, Clercq ED, Perno CF, Karlsson A, Balzarini J, Camarasa MJ (1994) 1,2,3-triazole-[2,5-Bis-O-(tert-butyl -dimethylsilyl)-beta.-D-ribofuranosyl]-3′-spiro-5″-(4″-amino-1″,2″-oxathiole 2″,-2″-dioxide) (TSAO) analogs: synthesis and Anti-HIV-1 activity. J Med Chem 37:4185–4194.  https://doi.org/10.1021/jm00050a015 CrossRefGoogle Scholar
  41. 41.
    Sonawane AD, Rode ND, Nawale L, Joshi RR, Joshi RA, Likhite AP, Sarkar D (2017) Synthesis and biological evaluation of 1,2,4-triazole- 3-thione and 1,3,4-oxadiazole-2-thione as antimycobacterial agents. Chem Biol Drug Des 90(2017):200–209.  https://doi.org/10.1111/cbdd.12939 CrossRefGoogle Scholar
  42. 42.
    Witkowski JT, Robins RK, Khare GP, Sidwell RW (1973) Synthesis and antiviral activity of 1,2,4-triazole-3-thiocarboxamide and 1,2,4-triazole-3-carboxamidine ribonucleosides. J Med Chem 16:935–937.  https://doi.org/10.1021/jm00266a014 CrossRefGoogle Scholar
  43. 43.
    Hakimian S, Hakimian AC, Anderson GD, Miller JW (2007) Rufinamide: a new anti-epileptic medication. Expert Opin Pharmacother 8:1931–1940.  https://doi.org/10.1345/aph.1M679 CrossRefGoogle Scholar
  44. 44.
    Buckle DR, Rockell CJM, Smith H, Spicer BA (1986) Studies on 1,2,3-triazoles. 13. (piperazinylalkoxy) [1] benzopyrano[2,3-d]-1,2,3-triazol-9(1H)-ones with combined H1-antihistamine and mast cell stabilizing properties. J Med Chem 29:2262–2267.  https://doi.org/10.1021/jm00161a022 CrossRefGoogle Scholar
  45. 45.
    Banday AH, Shameem SA, Gupta BD, Sampath Kumar HM (2010) D-ring substituted 1,2,3-triazolyl 20-keto pregnenanes as potential anticancer agents: synthesis and biological evaluation. Steroids 75:801–804.  https://doi.org/10.1016/j.steroids.2010.02.015 CrossRefGoogle Scholar
  46. 46.
    Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JH Jr (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc 124:5962–5963.  https://doi.org/10.1021/ja026290w CrossRefGoogle Scholar
  47. 47.
    Wagner UM, Reitze HK, Seitz KA (1990) Environmental actions of agrochemicals 1. Side-effects of the herbicide 3-amino-1,2,4-triazole on a laboratory acarine/host-plant interaction (Tetranychus urticae/Phaseolus vulgaris) as revealed by electron microscopy. Expt Appl Acarol 8:27–40.  https://doi.org/10.1007/BF01193379 CrossRefGoogle Scholar
  48. 48.
    Patil JD, Pore DM (2014) [C16MPy]AlCl3Br: an efficient novel ionic liquid for synthesis of novel 1,2,4-triazolidine-3-thiones in water. RSC Adv 4:14314–14319.  https://doi.org/10.1039/C3RA46916F CrossRefGoogle Scholar
  49. 49.
    Mane MM, Pore DM (2014) A novel one pot multi-component strategy for facile synthesis of 5-aryl- [1,2,4]triazolidine-3-thiones. Tetrahedron Lett 55:6601–6604.  https://doi.org/10.1016/j.tetlet.2014.10.052 CrossRefGoogle Scholar
  50. 50.
    Pore DM, Hegade PG, Mane MM, Patil JD (2013) The unprecedented synthesis of novel spiro-1,2,4-triazolidinones. RSC Adv 3:25723–25726.  https://doi.org/10.1039/c3ra44641g CrossRefGoogle Scholar
  51. 51.
    Ahulwalia VK, Kidwai M (2004) Basic principles of green chemistry. In: New trends in green chemistry. Springer, DordrechtGoogle Scholar
  52. 52.
    Mohammadi-Farani A, Ahmadi A, Nadri H, Aliabadi A (2013) Synthesis, docking and acetylcholinesterase inhibitory assessment of 2-(2-(4-benzylpiperazin-potential anti-Alzheimer effects. DARU J Pharm Sci 21:1–10.  https://doi.org/10.1186/2008-2231-21-47 CrossRefGoogle Scholar
  53. 53.
    Ignasik M, Bajda M, Guzior N, Prinz M, Holzgrabe U, Malawska B (2012) Design, synthesis and evaluation of novel 2-(aminoalkyl)- isoindoline-1,3-dione derivatives as dual-binding site acetylcholinesterase inhibitors. Arch Pharm 345:509–516.  https://doi.org/10.1002/ardp.201100423 CrossRefGoogle Scholar
  54. 54.
    Bajda M, Więckowska A, Hebda M, Guzior N, Sotriffer C, Malawska B (2013) Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 14:5608–5632.  https://doi.org/10.3390/ijms14035608 CrossRefGoogle Scholar
  55. 55.
    Hassan M, Abbasi MA, Rehman A, Siddiqui SZ, Hussain G, Shah SAA, Shahid M, Seo SY (2018) Exploration of synthetic multifunctional amides as new therapeutic agents for Alzheimer’s disease through enzyme inhibition, chemoinformatic properties, molecular docking and dynamic simulation insights. J Theor Biol 458:169–183.  https://doi.org/10.1016/j.jtbi.2018.09.018 CrossRefGoogle Scholar
  56. 56.
    Abbasi MA, Hassan M, Rehman A, Siddiqui SZ, Hussain G, Shah SAA, Ashraf M, Shahid M, Seo SY (2018) 2-Furoic piperazide derivatives as promising drug candidates of type 2 diabetes and Alzheimer’s diseases: in vitro and in silico studies. Comput Biol Chem 77:72–86.  https://doi.org/10.1016/j.compbiolchem.2018.09.007 CrossRefGoogle Scholar
  57. 57.
    Wang Y, Pan WL, Liang WC, Law WK, Tsz-Ming Ip D, Ng TZ, Waye MMY, Wan DCC (2013) Acetylshikonin, a novel AChE inhibitor, inhibits apoptosis via upregulation of heme oxygenase-1 expression in SH-SY5Y Cells. Evid Based Complement Altern Med 10(15):20.  https://doi.org/10.1155/2013/937370 Google Scholar
  58. 58.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–90.  https://doi.org/10.1016/0006-2952(61)90145-9 CrossRefGoogle Scholar
  59. 59.
    Saleem M, Rafiq M, Jeong YK, Cho DW, Kim CH, Seo SY, Choi CS, Hong SK, Lee KH (2018) Facile synthesis, crystal structure, DFT calculation and biological activities of 4-(2-fluorophenyl)-3-(3-methoxybenzyl)-1H-1,2,4-tri-azol-5 (4H)-one (5). Med Chem 14:451–459.  https://doi.org/10.2174/1573406414666180112122856 CrossRefGoogle Scholar
  60. 60.
    Abbasi MA, Hassan M, Siddiqui SZ, Shah SAA, Raza H, Seo SY (2008) Synthesis, enzyme inhibitory kinetics mechanism and computational study of N-(4-methoxyphenethyl)-N-(substituted)-4-methylbenzenesulfon-amides as novel therapeutic agents for Alzheimer’s disease. PeerJ 6:e4962.  https://doi.org/10.7717/peerj.4962 CrossRefGoogle Scholar
  61. 61.
    Reddy CVK, Sreeramulu D, Raghunath M (2010) Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Res Int 43:285–288.  https://doi.org/10.1016/j.foodres.2009.10.006 CrossRefGoogle Scholar
  62. 62.
    Ashraf Z, Rafiq M, Seo SY, Babar MM (2015) Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg Med Chem 23:5870–5880.  https://doi.org/10.1016/j.bmc.2015.06.068 CrossRefGoogle Scholar
  63. 63.
    Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286.  https://doi.org/10.1021/jm300871x CrossRefGoogle Scholar
  64. 64.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196.  https://doi.org/10.1021/jm051256o CrossRefGoogle Scholar
  65. 65.
    Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553.  https://doi.org/10.1021/jm050540c CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryKongju National UniversityGongjuRepublic of Korea
  2. 2.Department of Biological SciencesKongju National UniversityGongjuRepublic of Korea
  3. 3.Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
  4. 4.Center for Chemical AnalysisKorea Research Institute of Chemical TechnologyYuseong, DaejeonRepublic of Korea

Personalised recommendations