Advertisement

Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction

  • Ali Asghar MohammadiEmail author
  • Somayeh MakaremEmail author
  • Reza Ahdenov
  • Nazila Amiri Notash
Short Communication
  • 6 Downloads

Abstract

Due to the diverse applications of cyclopropane analogs in bioorganic, medicinal, and pharmaceutical chemistry, a clean and efficient procedure was established to synthesize spirocyclopropane via an electrochemical reaction which involves a sequence of Michael addition, halogenation, and intramolecular ring-closing reaction. In this study, an environmentally benign synthesis of spirocyclopropane was carried out through the condensation of indan-1,3-dione by aromatic aldehydes or 2-benzylidenemalononitrile derivatives. Constant current electrosynthesis was applied to a mixture of propanol containing sodium bromide as an electrolyte and a brominating agent at room temperature, respectively.

Graphic abstract

Keywords

Multicomponent reaction Spirocyclopropane Halogenation Intramolecular ring-closing Electro-catalyzed 

Notes

Supplementary material

11030_2019_9979_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2814 kb)

References

  1. 1.
    Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS (2016) Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533(7601):77CrossRefGoogle Scholar
  2. 2.
    Liang S, Zeng C-C, Luo X-G, F-z Ren H-Y, Tian B-GS, Little RD (2016) Electrochemically catalyzed amino-oxygenation of styrenes: n-Bu 4 NI induced C-N followed by a C–O bond formation cascade for the synthesis of indolines. Green Chem 18(7):2222–2230CrossRefGoogle Scholar
  3. 3.
    Qian P, Su J-H, Wang Y, Bi M, Zha Z, Wang Z (2017) Electrocatalytic C–H/N–H coupling of 2′-aminoacetophenones for the synthesis of isatins. J Org Chem 82(12):6434–6440CrossRefGoogle Scholar
  4. 4.
    Qian X-Y, Li S-Q, Song J, Xu H-C (2017) TEMPO-catalyzed electrochemical C–H thiolation: synthesis of benzothiazoles and thiazolopyridines from thioamides. ACS Catal 7(4):2730–2734CrossRefGoogle Scholar
  5. 5.
    Cardoso DS, Šljukić B, Santos DM, Sequeira CSA (2017) Organic electrosynthesis: from laboratorial practice to industrial applications. Org Process Res Dev 21(9):1213–1226CrossRefGoogle Scholar
  6. 6.
    Thomas A (1973) The synthesis of monoterpenes. Total Synth Nat Prod 2:1–195Google Scholar
  7. 7.
    Thomas AF, Bessiere Y (1981) The synthesis of monoterpenes, 1971—1979. Total Synth Nat Prod 4:451–591Google Scholar
  8. 8.
    Cativiela C, Daz-de-Villegas M (2000) Stereoselective synthesis of quaternary α-amino acids. Part 2: cyclic compounds. Tetrahedron Asymmetry 11(3):645–732CrossRefGoogle Scholar
  9. 9.
    Boger DL, Boyce CW, Garbaccio RM, Goldberg JA (1997) CC-1065 and the duocarmycins: synthetic studies. Chem Rev 97(3):787–828CrossRefGoogle Scholar
  10. 10.
    Chen DY-K, Pouwer RH, Richard J-A (2012) Recent advances in the total synthesis of cyclopropane-containing natural products. Chem Soc Rev 41(13):4631–4642CrossRefGoogle Scholar
  11. 11.
    Little RD, Dawson JR (1980) MIRC (Michael Initiated Ring Closure) reactions formation of three, five, six and seven membered rings. Tetrahedron Lett 21(27):2609–2612CrossRefGoogle Scholar
  12. 12.
    Jean Rodriguez DB, Enders D (2015) Stereoselective multiple bond-forming transformations in organic synthesis. Wiley, Hobo-kenCrossRefGoogle Scholar
  13. 13.
    Elinson MN, Vereshchagin AN, Ryzhkov FV (2016) Catalysis of cascade and multicomponent reactions of carbonyl compounds and C–H acids by electricity. Chem Rec 16(4):1950–1964CrossRefGoogle Scholar
  14. 14.
    Elinson MN, Vereshchagin AN, Tretyakova EO, Bushmarinov IS, Nikishin GI (2011) Stereoselective Electrocatalytic Cyclization of 4, 4′-(Arylmethylene) bis (1H-pyrazol-5-ols) to (5R*, 6R*)-11-Aryl-4, 10-dimethyl-2, 8-diphenyl-2, 3, 8, 9-tetraazadispiro [4.0. 4.1] undeca-3, 9-diene-1, 7-diones. Synthesis 18:3015–3019CrossRefGoogle Scholar
  15. 15.
    Ferrary T, David E, Milanole G, Besset T, Jubault P, Pannecoucke X (2013) A straightforward and highly diastereoselective access to functionalized monofluorinated cyclopropanes via a michael initiated ring closure reaction. Org Lett 15(21):5598–5601.  https://doi.org/10.1021/ol402837u CrossRefGoogle Scholar
  16. 16.
    Russo A, Lattanzi A (2010) Stereoselective synthesis of functionalised cyclopropanes from nitroalkenes via an organocatalysed Michael-initiated ring-closure approach. Tetrahedron Asymmetry 21(9–10):1155–1157CrossRefGoogle Scholar
  17. 17.
    Tian B, Liu Q, Tong X, Tian P, Lin G-Q (2014) Copper(I)-catalyzed enantioselective hydroboration of cyclopropenes: facile synthesis of optically active cyclopropylboronates. Org Chem Front 1(9):1116–1122CrossRefGoogle Scholar
  18. 18.
    Molander GA, Harring LS (1989) Samarium-promoted cyclopropanation of allylic alcohols. J Org Chem 54(15):3525–3532CrossRefGoogle Scholar
  19. 19.
    Russo A, Meninno S, Tedesco C, Lattanzi A (2011) Synthesis of Activated Cyclopropanes by an MIRC Strategy: an enantioselective organocatalytic approach to spirocyclopropanes. Eur J Org Chem 26:5096–5103CrossRefGoogle Scholar
  20. 20.
    Wang G-W, Gao J (2009) Selective formation of spiro dihydrofurans and cyclopropanes through unexpected reaction of aldehydes with 1,3-dicarbonyl compounds. Org Lett 11(11):2385–2388CrossRefGoogle Scholar
  21. 21.
    Ghorbani-Vaghei R, Maghbooli Y (2016) Synthesis of activated cyclopropanes by MHIRC strategy: a facile and efficient approach to spirocyclopropanes using N-halosulfonamides. Synthesis 48(21):3803–3811CrossRefGoogle Scholar
  22. 22.
    Xin X, Zhang Q, Liang Y, Zhang R, Dong D (2014) Tandem halogenation/Michael-initiated ring-closing reaction of α, β-unsaturated nitriles and activated methylene compounds: one-pot diastereoselective synthesis of functionalized cyclopropanes. Org Biomol Chem 12(15):2427–2435CrossRefGoogle Scholar
  23. 23.
    Ghorbani-Vaghei R, Akbari-Dadamahaleh S (2009) Poly (N-bromo-N-ethylbenzene-1, 3-disulfonamide) and N,N,N′,N′-tetrabromobenzene-1, 3-disulfonamide as efficient reagents for synthesis of quinolines. Tetrahedron Lett 50(9):1055–1058CrossRefGoogle Scholar
  24. 24.
    Luthe GM, Schut BG, Aaseng JE (2009) Monofluorinated analogues of polychlorinated biphenyls (F-PCBs): Synthesis using the Suzuki-coupling, characterization, specific properties and intended use. Chemosphere 77(9):1242–1248CrossRefGoogle Scholar
  25. 25.
    Kawamata Y, Yan M, Liu Z, Bao D-H, Chen J, Starr JT, Baran PS (2017) Scalable, electrochemical oxidation of unactivated C–H bonds. J Am Chem Soc 139(22):7448–7451CrossRefGoogle Scholar
  26. 26.
    Makarem S, Fakhari A, Mohammadi A (2012) Electro-organic synthesis of nanosized particles of 3-hydroxy-3-(1H-indol-3-yl) indolin-2-one derivatives. Chem Mon/Monatshefte für Chemie 143(8):1157–1160CrossRefGoogle Scholar
  27. 27.
    Makarem S, Fakhari AR, Mohammadi AA (2012) Electro-organic synthesis of nanosized particles of 2-amino-pyranes. Ind Eng Chem Res 51(5):2200–2204CrossRefGoogle Scholar
  28. 28.
    Fakhari AR, Nematollahi D, Shamsipur M, Makarem S, Davarani SSH, Alizadeh A, Khavasi HR (2007) Electrochemical synthesis of 5, 6-dihydroxy-2-methyl-1-benzofuran-3-carboxylate derivatives. Tetrahedron 63(18):3894–3898CrossRefGoogle Scholar
  29. 29.
    Elinson MN, Feducovich SK, Starikova ZA, Vereshchagin AN, Nikishin GI (2004) Stereoselective electrocatalytic transformation of arylidenemalononitriles and malononitrile into (1R, 5S, 6R)*-6-aryl-2-amino-4, 4-dialkoxy-1, 5-dicyano-3-azabicyclo [3.1. 0] hex-2-enes. Tetrahedron 60(51):11743–11749CrossRefGoogle Scholar
  30. 30.
    Elinson MN, Sokolova OO, Korshunov AD, Barba F, Batanero B (2018) electrocatalytic cascade reaction of aldehydes and 4-hydroxy-6-methyl-2H-pyran-2-one. Electrocatalysis 9(5):602–607CrossRefGoogle Scholar
  31. 31.
    El-Gaby MSA (2004) Syntheses of hitherto unknown thiazole, ylidene and pyridinethione derivatives having a piperidin-1-yl moiety and their use as antimicrobial agents. J Chin Chem Soc 51(1):125–134CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemistry and Chemical Engineering Research Center of Iran (CCERCI)TehranIslamic Republic of Iran
  2. 2.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations